Elemente der Algebra: Blatt 2

A1. Ziel dieser Aufgabe ist es zu zeigen, dass die Gruppe A_n erzeugt wird von den Dreizykeln der Form $(1 \, 2 \, x)$ mit $x \in \{3, \ldots, n\}$.

Sei hierzu B_n die Untegruppe von S_n , die erzeugt wird von $\{(1 \, 2 \, x) : x \in \{3, \dots, n\}\}$. Die Aufgabe ist also zu zeigen, dass $A_n = B_n$.

- (a) Zeigen Sie, dass die Elemente der Form (1 x 2) mit $x \in \{3, ..., n\}$ in B_n enthalten (4) sind.
- (b) Zeigen Sie, dass die Elemente der Form (1 x)(2 y) mit $x, y \in \{3, ..., n\}$ und $x \neq y$ (4) in B_n enhalten sind.
- (c) Zeigen Sie nun, dass die Element der Form (1 x y) und (2 x y) mit $x, y \in \{3, ..., n\}$ und $x \neq y$ in B_n enhalten sind.
- (d) Zeigen Sie, dass die Elemente der Form (xyz) mit $1 \le x < y < z \le n$ in B_n (8) enthalten sind und schließen Sie, dass $A_n = B_n$.
- **A2.** (a) Sei G eine Gruppe. Auf G sei folgende Relation definiert: Für $a,b \in G$ gelte $a \sim b$, (4) falls a und b konjugiert sind, d.h., falls es ein $c \in G$ gibt mit $a = c^{-1}bc$. Zeigen Sie, dass \sim eine Äquivalenzrelation ist. Die Äquivalenzklassen bezüglich \sim nennt man die Konjugiertenklassen von G.
 - (b) Sei $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ und $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
 - (i) Sind A und B konjugiert, wenn man sie als Elemente von $GL_2(\mathbb{C})$ auffasst (also als Elemente der Gruppe der invertierbaren 2×2 -Matrizen, wobei die Gruppenoperation durch die Matrixmultiplikation gegeben ist)? (Hinweis: Diagonalisieren Sie die Matrizen zunächst.)
 - (ii) A, B lassen sich auch als Elemente von $GL_2(\mathbb{R})$ auffassen. Sind sie in dieser (8) Gruppe konjugiert? (Hinweis: Wie lassen sich die Matrizen A, B geometrisch interpretieren? Welche Operation führt also A in B über?)