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Statistical issues in the analysis of adverse
events in time-to-event data

Arthur Allignol,®* Jan Beyersmann,® and Claudia Schmoor®

The aim of this work is to shed some light on common issues in the statistical analysis of adverse events (AEs) in clinical tri-
als, when the main outcome is a time-to-event endpoint. To begin, we show that AEs are always subject to competing risks.
That is, the occurrence of a certain AE may be precluded by occurrence of the main time-to-event outcome or by occurrence
of another (fatal) AE. This has raised concerns on ‘informative’ censoring. We show that, in general, neither simple propor-
tions nor Kaplan-Meier estimates of AE occurrence should be used, but common survival techniques for hazards that censor
the competing event are still valid, but incomplete analyses. They must be complemented by an analogous analysis of the
competing event for inference on the cumulative AE probability. The commonly used incidence rate (or incidence density) is a
valid estimator of the AE hazard assuming it to be time constant. An estimator of the cumulative AE probability can be derived
if the incidence rate of AE is combined with an estimator of the competing hazard. We discuss less restrictive analyses using
non-parametric and semi-parametric approaches. We first consider time-to-first-AE analyses and then briefly discuss how they
can be extended to the analysis of recurrent AEs. We will give a practical presentation with illustration of the methods by a

simple example. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: Aalen-Johansen; competing risks; safety; survival

1. INTRODUCTION

The analysis of safety in terms of adverse events (AEs) is relevant
in almost all clinical trials [1]. Generally, these are reported as inci-
dence proportions calculated by crude rates, that is, the number
of patients with AEs divided by the number of patients in the
sample [2-4]. AEs however can occur at any point in time dur-
ing the patient’s time under observation, which is not taken into
account by such crude estimates. This is particularly relevant if
follow-up durations differ between treatment groups, for exam-
ple, if an experimental treatment successfully prolongs survival.
Also, note that individual follow-up durations will almost always
differ between patients because of staggered study entry. More-
over, in a time-to-event setting, a crude rate estimator that ignores
censoring can be highly biased, in particular when the proportion
of dropouts differs between treatment groups [2-4].

For these reasons, survival analysis techniques are advocated
for analysing AEs when the main outcome of a clinical trial is
a time-to-event endpoint. We further argue that AEs are always
subject to competing risks. That is, the occurrence of the AE
of interest might be precluded by the occurrence of the main
time-to-event outcome, or another, fatal, AE (e.g. [5-7]). This has
raised concerns on informative censoring. For instance, Nishikawa
et al. [5] also advocate the use of competing risks analysis to deal
with ‘informative’ censoring. The implication is that the occur-
rence of competing events should be correctly taken care of when
analysing AEs. For instance, the simple incidence proportion is
a correct estimator only if vital and AE statuses are known for
all patients. Kaplan-Meier estimates of AE occurrence must not
be used, but common survival techniques for hazards that cen-
sor the competing event are still valid, but incomplete analyses.
They must be complemented by an analogous analysis of the

competing event for inference on the cumulative AE probability.
For simplification, we restrict the presentation mainly to methods
that consider just the time-to-first AE. We will, however, briefly
indicate how the hazard-based techniques that are crucial for
analysing time-to-first AE can also be used for recurrent AEs.

As depicted in Figure 1, we consider the simple situation in
which patients may either experience at least one AE of a cer-
tain type or die without prior AE. In the following, the short-term
death always means death without prior AE. Patients enter the
study free of AE and alive and may experience at least one AE
or die without prior AE, whichever comes first. The number of
patients who experience at least one AE is denoted by #AE, and
the number of study patients is denoted by n, such that #AE < n.
So our main target quantity is the probability to experience at
least one AE.

The aim of this paper is to explain and illustrate basic concepts
of the correct analysis of AEs in patients with different observa-
tion times due to right-censoring. We illustrate the methods by
using data from a clinical trial in oncology. We have chosen not
to explain the medical context, because of two reasons. First, we
have to make the data anonymous because of confidentiality at
this stage. Second, we regard this as an advantage because we
want to avoid subject matter considerations and discussions in
order to concentrate just on the methodological aspects of the
different analyses. We start with an illustration of the methods in
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Figure 1. Graphical display of the data situation. After study entry, a patient may
either experience at least one adverse event (AE) (=AE), or die without prior AE
(=Death).

the simple situation where the data are complete in the follow-
ing sense: we consider a data set of 200 patients with complete
follow-up information about AEs and vital status up to 2years
after study entry for all patients. After 2 years, 54 patients expe-
rienced at least one AE, while 48 died without prior AE. The
remaining 100 patients experienced neither of the competing
events up to 2 years. In the sequel, the illustration of the methods
in the situation of incomplete data is performed by modifying our
data set by adding artificial right-censoring such that patients will
have different follow-up times.

The paper is organised as follows: Section 2 deals with the
non-parametric estimation of the probability of AE. Section 3
presents the competing risks setting more formally and discusses
the use of the incidence rate (IR) for summarising the risk of AE.
In Section 4, semi-parametric models for the comparison of treat-
ment groups are presented. Section 5 gives some more details on
competing risks and censoring, which is an omnipresent topic in
the analysis of competing risks data, and also briefly outlines how
the present methodology may be used when AEs are recurrent.
The paper concludes with a discussion in Section 6.

2. NON-PARAMETRIC ESTIMATION OF THE
PROBABILITY OF ADVERSE EVENTS

2.1. Complete data

We begin by considering complete data without censoring, that
is, up to a certain time in follow-up, say t, it is known for every
patient if an AE or death has occurred. This simplified situation
allows for an accessible and natural introduction towards the
competing risks situation. For instance, the simple fact that, with
an infinite follow-up time, P(AE) + P(Death) = 1 gets some-
times lost in the situation of censoring. For instance, if follow-up
ends at one common calendar time for all patients, but patient
entry was staggered, the individual follow-up durations will differ,
and the aforementioned information will, at best, only be known
up to the minimum follow-up time. The complete data situation
also permits to introduce the quantities we want to estimate,
that is, the quantities that are approximated when considering
right-censored data.

In the complete data situation without censoring, the incidence
proportion is calculated by the crude rate

#AE
n

/ M

where #AE is the number of patients with at least one AE in [0, t].
The quotient #AE/n is the correct estimator of the probability to
experience at least one AE, P(AE)= P(AEin [0, t]), in [0, 7].

Patients may actually die before experiencing an AE; thus,
death is a competing event (competing risk) for AE. In other
words, death may preclude the observation of an AE - after
death, the AE cannot occur anymore. Thus, with an infinite
follow-up time,

#AE  #Death _
n n

1. )

Still considering complete data without censoring, the esti-
mated probability of experiencing at least one AE within some
time-interval [0, t] is given by

#AEin [0, 1]

P(AEin [0,t]) = 3)

Then on [0, t], the estimated probability to experience the com-
posite event, that is, AE or death without prior AE, is

IS(AE in[0,t]) + IS(Death w/o prior AEin [0, t])
#AE in [0, t] N # Death in [0, t]

n n @)
# AE or death (whatever comes first) in [0, t]

n

:1—f’(T>t),

with T the time to first AE or death without prior AE, whatever
comes first.

In our simple example of 200 patients with complete follow-up
up to 2years (54 with AE and 48 deaths prior to AE), the proba-
bility to experience an AE in time interval [0, 2], P(AE in [0, 2]), is
correctly estimated by the incidence proportion calculated by the
crude rate 54/200 = 0.27. The estimated probability to experi-
ence an AE plus the estimated probability to die without prior AE,
w = 48/200 = 0.24, sum up to the estimated prob-
ability to experience the composite event, that is, AE or death,
1—P(T>1t)=1—98/200 = 0.51.

Sometimes, the Kaplan—-Meier estimator is used to estimate
P(AEin [0,t]) by treating death without prior AE as censored
observation. Numerous technical arguments explaining why the
Kaplan—-Meier estimator is a biased estimator of P(AEin [0, t])
have been given [8]. An intuitive one is that 1 minus the
Kaplan-Meier estimator aims at approximating a distribution
function, that is, it tends towards one as t gets larger. However,
as noted before, P(AEin [0, t]) 4+ P(Deathin [0, t]) tends towards
1 as t gets larger. Thus, in a true competing risks situation, the
probability of AE is strictly smaller than 1, and consequently,
the Kaplan-Meier estimator to estimate P(AEin [0, t]) will be
biased upwards.

2.2. Right-censored data

We now consider the situation, where the event time T defined
previously is not observed for all patients until all times t, t <
7. We only observe the minimum of a right-censoring time and
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the event time T. In this situation, the quantities presented in
(3) and (4) cannot be computed anymore as the numerator is
now unknown. It is remarkable that this well-known difficulty has
led to a widespread use of appropriate statistical methods for
censored time-to-event data in efficacy analyses, but not in the
analysis of safety data.

The probability P(T > t) of not experiencing the composite
event can be estimated by the Kaplan-Meier estimator censor-
ing patients who experience their first AE or death after their
observed—-censored event time,

), (5)

|SK,\/|(T >t) = l_[ (1
u<t

where # under observation before u denotes the number of
patients under observation with neither AE nor death before
u, that is, the so-called risk set, and where the product is over
all observed unique (AE or death) event times u in (0,t]. The
Kaplan-Meier estimator aims at approximating

# AE or death atu
# under observation before u

: # AE or deathin [0, t]
" .

(6)

Note that without censoring, (5) and (6) are equal.
The incidence proportion should not be used to estimate
P(AEin [0, t]) because it is biased. For example,

# AEsin [0, t]
n

estimates P(AEin [0,t]and T < censoring time). This is not a
relevant quantity because a patient’s safety concern is directed
towards P(AEin [0,t]) > P(AEin[0,tJand T < censoring time).
In words, the incidence proportion of AE underestimates the
probability of AE in the presence of censoring.

As already stated in Section 2.1, the Kaplan-Meier estimator by
treating death without prior AE as censored observation should
also not be used to estimate P(AEin [0, t]), because it overesti-
mates the probability of AE.

The Aalen-Johansen estimator of the cumulative incidence
function (CIF) is the correct method for estimating the proba-
bility of AE in the presence of competing risks. The CIF of AE,

denoted by P(T < t, AE), is the expected proportion of patients
experiencing an AE over the course of time.

To derive an estimator for the CIF of AE, we use the fact that 1
minus the Kaplan—-Meier estimator of the probability of not expe-
riencing the composite event AE or death up to time t, 1 — I3(T >
t), can be written as follows:

# AE ordeath atu
# under observation before u’

1-P(T> 1) =) P(T > u-)

u

@

with IS(T > u—) denoting the Kaplan-Meier estimator of the
probability of not experiencing the composite event AE or death
just before time u. Equation 7 is easily shown by checking the
increments f’(T > u—) — |3(T > u) at jump times u. The intuition
behind the right-hand side of (7) is that the probability of experi-
encing one of the events AE or death 1 — IS(T > t) is obtained by
‘summing’ the probability of not experiencing one of the events
up to time u times the conditional probability to experience one
of the events exactly at time u given no prior event. In other
words, the right-hand side of (7) can be interpreted as the sum
over empirical probabilities to have an event — either AE or death —
at an observed event time u, u < t. This sum then is the empirical
probability to have an AE or death event in [0, t].

The same reasoning leads to an estimator of the CIF of AE.
Instead of summing over the empirical probability of experienc-
ing the composite event of AE or death, we sum over the empirical
probability of experiencing an AE, that is,

n A #AEatu
P(T <t AE) = P(T >u—)- .
(= ) ; (> u-) # under observation before u
(8)
In the absence of censoring, (8) equals
#AEin [0, t
sEn0g o

which again highlights that the incidence proportion is a correct
estimator for complete data, but not for censored data. In con-
trast, the Kaplan-Meier-type estimator for AE occurrence is always
biased, and it does not equal (9) in the absence of censoring.
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Figure 2. Probability of adverse event (AE) estimated in the complete data set by the Aalen-Johansen estimator of the cumulative incidence function (CIF) (black), the
incidence proportion calculated as the crude rate (dashed line), and the wrong Kaplan-Meier estimator (grey).
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Figure 3. Probability of adverse event (AE) estimated in the right-censored data set by the Aalen-Johansen estimator of the cumulative incidence function (CIF) (black),
the incidence proportion wrongly calculated as the crude rate (dashed line), and the wrong Kaplan-Meier estimator (grey). The horizontal grey line gives the incidence

proportion computed from the complete data.

We finally note that

1—P(T > t) = P(T < t,AE) + P(T < t,Death),  (10)
that is, 1 minus the Kaplan-Meier estimator of the probability of
not experiencing the composite event AE or death up to time ¢, is
equal to the sum of the Aalen-Johansen estimators of the prob-
abilities of experiencing the competing events AE and death up
to time t. The balance Equation 10 is violated, if the terms on the
right-hand side are estimated via Kaplan-Meier.

2.3. lllustration

The different methods for estimation of the probability of an AE
are now illustrated in our simple example. We start with the data
set being complete up to 2 years. Figure 2 shows the incidence
proportion calculated as the crude rate (1), the Aalen-Johansen
estimator of the CIF (8), and the wrong Kaplan-Meier estima-
tor treating death prior to AE as censored observations. The
Aalen-Johansen estimator of the CIF is equal to the incidence pro-
portion 0.27 at the plateau - as expected — because the incidence
proportion is a correct estimator for P(AE in [0, 2]) in the situation
of complete data. It can be seen that the wrong Kaplan-Meier
estimator clearly overestimates the probability of AE.

For illustration of the methods in the situation of
right-censored data, we add artificial right-censoring such that
patients will have different follow-up times. Right-censoring
times were generated following a uniform distribution on [6, 24]
and independently of the data. At the end of the follow-up after
2 years, now, 46 patients with AE and 42 deaths were observed.
The incidence proportion calculated as the crude rate (1) is now
0.23, while the Aalen-Johansen estimator of the CIF (8) is equal
to 0.26 at the plateau (Figure 3). This illustrates that the use of
simple proportions to estimate P(AE in [0, t]) leads to underesti-
mation in the presence of right-censoring. Figure 3 also displays
the wrong Kaplan-Meier of AE, which again overestimates the
probability of AE.

3. THE COMPETING RISKS MODEL

More formally, the competing risks model considers the time until
some first event T, for example, AE or death without prior AE,

as well as the type of event at time T denoted by E. E equals
1 if an AE is observed at time T, 2 if a death without prior AE
occurred at T. Thus, competing risks data consist of the tuple
(T, E), whose observation might be subject to right-censoring C.
Thus, observed are (T A C, (T < C) - E), where A denotes mini-
mum and I(T < C) denotes the indicator function being 1if T < C
and 0 otherwise.

3.1. Survival analysis is based on hazards

The modelling of competing risks data (and survival data in gen-
eral) is built on hazards. For instance, the Kaplan-Meier estimator
of the composite event AE or death, whatever comes first, is based
on estimates of the all-event hazard «(t) (times the length of
infinitesimally small time steps dt)

# AE ordeath at t
# under observation before t’

a(t)dt = (1)

which decomposes into two so-called event-specific hazards
aAE(H)dt + apeath (t)dt, estimated by

#AEatt
# under observation before t

# Death at t
# under observation before(q'z)

The decomposition in (12) motivates the Nelson-Aalen estima-
tor of the cumulative hazard to experience an AE,

tA
/0 txAE(u)du = Z

It is evident from the numerator of (13) that only AE events
are counted for computing the Nelson-Aalen estimator of the
cumulative hazard to experience an AE. One way to do that in
practice is to censor the competing event, that is, death without
prior AE. That is, inference for the hazard of AE can be per-
formed by, formally, censoring patients who died without prior
AE, and vice versa. Note that this has nothing to do with an
‘independent competing risks’ assumption, which postulates the
existence of hypothetical, independent latent times until AE and
until death, respectively [9]. It is just a practical trick to compute
the Nelson-Aalen estimator. However, we cannot ‘censor away’

#AEatu
# under observation before u”

(13)
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competing events when computing probabilities as (8) depend
on all event-specific hazards through P(T > u—). Thus, cen-
soring by a competing risk is ‘informative’ in the sense that the
competing event influences the probability estimate.

In the competing risks setting, all event-specific hazards should
be analysed in order to obtain a full picture of the data [10], as
the CIF depends on all event-specific hazards via P(T > u—);
see (8). Analogously, it is recommended to look at the CIFs of all
competing risks (Figure 4).

3.2. Incidence rate

Often, the IR (also called incidence density) of AE

#AE
Population time at risk

(14)

is used to summarise the risk of a patient to experience at least
one AE. The IR of AE is a valid estimator of the hazard of AE assum-
ing it to be time constant. If the event type E is observed for all
individuals, an estimator of the cumulative AE probability can be
derived if the hazard of AE estimated by the IR is combined with

an estimator of the competing hazard [11]

IR AE #AE/Population time at risk #AE
All-event IR~ (#AE + #Deaths)/Population time atrisk ~ n
(15)
The last Equation 15 is only valid for infinite follow-up as only then
#AE + #Deaths = n, but it illustrates that both the IR of AE and of
death without prior AE should be looked at, because both enter
the estimation of the AE probability. Thus, the same considera-
tions as outlined previously for hazards in general apply to the IRs.
An estimator of the cumulative AE probability that is valid with
right-censored data is

IR AE

AleventlR (1 —exp(t - All-event IR)),

(16)
which is the parametric analogue of formula (8) under the
assumption of constant event-specific hazards. We note that
although the IR is a valid estimator of the hazard of AE — assuming
the latter to be constant - the constant hazard assumption has
been criticised in medical applications [12,13].

For illustration in our simple example, Figure 5 displays the
Nelson-Aalen estimates of the cumulative hazard of AE and death
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Figure 4. Probability of adverse event (AE) estimated in the right-censored data set by the Aalen-Johansen estimator of the cumulative incidence function (CIF) (black) along

with the Aalen-Johansen estimates of the CIF of death (grey).
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Figure 5. Cumulative hazard of adverse event (AE) (black) and death (grey) estimated by the Nelson-Aalen estimator (solid lines) and the corresponding incidence rates

(dashed lines).
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Figure 6. Probability of adverse event (AE) estimated by the Aalen-Johansen estimator in black and estimated based on the incidence rates (grey). CIF, cumulative

incidence function.

along with the cumulative IRs of AE and death without prior AE
computed from the right-censored data set. Recall that the IRs
estimate the event-specific hazards if we assume them to be con-
stant. Figure 5 suggests that this assumption might be violated
for both the hazard of AE and of death without prior AE. This is
further suggested by Figure 6 that shows the CIF of AE estimated
by the Aalen-Johansen estimator (8) and via the IRs of AE and
death without prior AE (16). Interestingly, both approaches are
quite close to each other at the last event time (around month 15).
The interpretation in the present data example is that although a
model of constant event-specific hazards is not supported by the
data, estimating the AE probability in this simple competing risks
model leads to a meaningful estimate of the plateau of the CIF
of AE. This is in contrast to both the crude rate (which does not
account for censoring) and the inappropriate Kaplan-Meier esti-
mator (which does not account for competing risks) from Figure 3.
However, care should be taken of not extrapolating beyond the
last event time.

One reviewer also pointed out that the incidence proportion,
although in general inappropriate as a probability estimator, may
be given an interpretation as the cumulative IR at the average
follow-up time,

#AE  Population time at risk
— = -IR AE.

n n

In the presence of right-censoring, this relation allows for an
interpretation of the incidence proportion with respect to aver-
age follow-up, under the assumption of a constant event-specific
hazard of AE.

4. COMPARISON OF TREATMENT GROUPS

For comparison of treatment groups in a clinical trial with survival
data, the most widely used regression model is the Cox propor-
tional hazards model. The model assumes that the hazard for the
composite event AE or death dependent on treatment groups
Z =0andZ = 1is of the form

a(t|2) = ao(t) exp(B2), (17)

where ao(t) is an unspecified, positive, baseline hazard and
exp(pB) is the hazard ratio of treatment group Z = 1 as compared
with treatment group Z = 0.
A similar model can be fitted to the event-specific hazard of AE,
ane(tlZ2) = aaeo(t) exp(Bae2), (18)
where apg0(t) is an unspecified baseline event-specific hazard
and exp(Bag) is an event-specific hazard ratio. In perfect anal-
ogy to the Nelson—Aalen estimator (13), fitting a Cox proportional
hazards model for the hazard of AE can be performed in practice
by censoring the death events. However, a complete picture is to
be had only if an analogous model is also fitted to the hazard of
death without prior AE

apeath (t|2) = apeath;0(t) exp(Bpeath)- (19)

Remember that the CIF of AE (8) depends on a highly nonlinear
way on both event-specific hazards; thus, both event-specific haz-
ards should be analysed to understand the shape of the event
probabilities. This often raises some interpretational issues and
has led to the development of regression models that are directly
interpretable in terms of the CIF, the most prominent being the
Fine and Gray model [14].

The idea of Fine and Gray is to consider an alternative hazard
notion that reestablishes a one-to-one relationship between haz-
ards and probabilities. The subdistribution hazard A(t)dt of AE is
estimated by the following:

#AEatu
# patients not censored and w/o AE before u’

(20)

The Fine and Gray model then assumes proportionality of the
subdistribution hazards

A(t) = Ao(t) exp(y2), (21)
with Ao(t) the baseline subdistribution hazard and exp(y) the
subdistribution hazard ratio. Note that in (20), patients who have
experienced a death without prior AE are still considered to be at
risk for the subdistribution hazard to experience an AE. The tech-
nical challenge in (20) is that dead patients should only be kept
in the modified risk set until their potential censoring time. Fine
and Gray [14] solved this using inverse probability of censoring

Copyright © 2016 John Wiley & Sons, Ltd.
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weighting and empirical process arguments. The supplementary
material of [15] illustrates a simpler solution that applies to clini-
cal trials with only administrative censoring. One advantage of the
Fine and Gray approach is that there is a one-to-one relationship
between the subdistribution hazard and the CIF

t
1 —exp (—/ A(u)du) = P(T < t,AE),
0

such that the subdistribution hazard ratios are directly inter-
pretable in terms of the CIF.

Both modelling event-specific hazards and subdistribution haz-
ard have their merits. On the one hand, the subdistribution hazard
analysis allows for a direct probability interpretation, but the sub-
distribution hazard in itself and the associated subdistribution
hazard ratio do not have a clear biological interpretation [16].
On the other hand, the interpretation of the event-specific haz-
ards requires greater care in the sense that both event-specific
hazards models should be interpreted side by side in order to
understand the treatment effect on the CIF of interest. But that is
only through the event-specific hazards that we understand why
we see a certain effect on the event probabilities [9].

5. FURTHER METHODOLOGICAL ASPECTS

5.1. Competing risks and censoring

We have demonstrated that censoring an observed competing
event yields valid inference for the event-specific hazard but
such analyses are required for all event-specific hazards in order
to arrive at probability statements: a Kaplan—Meier-type estima-
tor for AE that censors observed death events is biased, but a
Nelson—Aalen estimator that follows the same censoring rules
is the correct non-parametric estimator of fotozAE(u)du. In our
experience, this has caused some confusion in practice.

Oneissue is that a typical assumption on censoring in a survival
analysis is that those censored have the same momentary risk of
an event as those still in the risk set (e.g. [17], p. 38). This assump-
tion holds for the so-called random censoring that assumes a
censoring time that is independent of the event time. In our data
example, administrative censoring fulfils the random censoring
assumption, but censoring by a competing risk does not: a patient
who has been observed to die is not at risk of an AE anymore.

In fact, random censoring is an unnecessarily restrictive
assumption, and the counting process literature [18,19] makes
a more subtle independent censoring assumption. (Note that the
terminology varies in the literature; we follow the counting pro-
cess approach.) The aforementioned assumption on censoring
has compared the momentary risk of those still under observa-
tion with those censored. The independent censoring assumption
starts with the completely observed case as in Section 2.1 and
assumes that the momentary risk of an event is not changed
by additional knowledge on the censoring process. By censor-
ing process, we mean individual on/off mechanisms that equal
1 as long as the individual is under observation and that equal
0 otherwise. Clearly, the additional knowledge of administrative
censoring times fulfils the independent censoring assumption.

The point is that censoring by a competing risk also fulfils
the independent censoring assumption. Consider again the com-
pletely observed case and additionally assume knowledge on
the occurrence of competing events. This knowledge will not
change momentary risks, because it was already available in the
completely observed case. The bottom line is simple: observed

competing events should be removed from the risk set, because,
for example, a person who has died will not experience an AE any-
more. This is what censoring a competing event achieves. Because
probabilities depend on all hazards involved, it is required to
perform such analyses for all event-specific hazards.

5.2. Target quantities in the presence of competing risks

We have argued that occurrence of AE is always subject to com-
peting risks, which entails that all the event-specific hazards of
the competing risks at hand should be considered. The latter is in
particular true for probability statements which are, for example,
relevant for prediction of patient outcomes. To this end, we have
mainly focused on the probability to experience at least one AE
(within [0, ]).

However, competing risks do not only present a technical chal-
lenge in that multiple hazards are present. There are also multi-
ple ways to formalise group comparisons. For instance, consider
the situation where a treatment is beneficial in that it reduces
peath () but does not affect the momentary AE risk by leav-
ing aae(t) unchanged. It is then fairly straightforward to show
[9, Sec. 4.5] that treatment reduces the probability of death with-
out prior AE for all times but, as a consequence of this, also
increases the probability of AE for all times.

The practical implication for AE analyses is, in our current
experience, limited: comparable event-specific hazards for AE will
often lead to comparable CIFs for AE, although this is not guaran-
teed. We also believe that the question of how to formalise group
comparisons in the presence of competing risks has not been fully
resolved yet, although there are some efforts in this direction; see,
for example, [20], and [21] using ideas for composite endpoints.

5.3. Beyond time-to-first adverse event

We have focused on time to first AE of a certain type. Key points
were that they are always subject to competing risks and that
survival methodology is required, although not the Kaplan—-Meier
estimator. We will now briefly outline that the hazard-based tech-
niques generalise to recurrent AE events. Probability estimation,
however, will be more involved. Let us consider one type of AE
that may occur more than once in a single patient and as long as
the patient is still alive. Formally, this is immediately accounted for
in the simple IR formula

#AE
Population time at risk’

if we re-interpret #AE as the number of observed AEs (in [0, 7]),
possibly recurrent, such that an individual may now contribute
more than one AE event. Some authors have viewed this as a
‘dubious concept’ [22], but as [23] points out, it is an advantage
that does, of course, rely on the constant hazard assumption.
This assumption is now more restrictive than in the time-to-first
event setting, because it is now also assumed that the AE inten-
sity remains constant irrespective of the different number of prior
AEs of the patients.
Computationally  equally
Nelson-Aalen estimator,

simple is generalising the

# of observed AEs at u

Xu: # under observation before u’
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where an individual now contributes to the numerator in the
aforementioned display as many summands as it experiences AEs.
While this estimator avoids the constant hazard assumption, it
still assumes that the momentary AE intensity is the same for
all patients irrespective of the individual AE history. Alternatively,
we may view this Nelson-Aalen estimator as an estimator of the
partially conditional AE rate. That is, the summand

# of observed AEs at u
# under observation before u

estimates an average over all individuals currently at risk, that
is, alive and under observation. The estimate is partially condi-
tional on the present at-risk status and averages in that it allows
for the individual momentary risks to differ according to the indi-
vidual courses of disease. Chapter 8 of [18] gives an accessible
introduction to the details involved.

A popular regression model for recurrent events is the so-called
Andersen-Gill model [19], an extension of the Cox model using
the counting process paradigm. The extension is that a propor-
tional hazards assumption is made for the intensity of a counting
process that counts recurrent AEs; past AE occurrences may be
included as time-dependent covariates.

Further summary functionals such as probability estimates may
be derived but are typically complex. One possibility would be to
model recurrent AEs in a multi-state model extension of Figure 1
and to use a general matrix-valued version of the Aalen-Johansen
estimate [9,19]. See also [7,24] for further summary functionals
in the context of recurrent events in the presence of a terminal
event, as well [6] for an estimation of the cumulative duration of
AEs in this same context.

5.4. Death after adverse event

The focus of this paper has been to highlight statistical issues in
the analysis of time-to-first-AE events. Any analysis of subsequent
events will rely on an adequate analysis of the time-to-first-event
situation. In the previous subsection 5.3, we have discussed how
hazard-based analyses extend to recurrent AEs. We now briefly
consider the related issue that the occurrence of a first AE event
may change the momentary risk of subsequent events, including
both AEs and primary study outcomes such as overall survival.

To begin, note that the situation at hand was used as a def-
inition of competing risks by [8] who ‘define[d] a competing
risk as an event whose occurrence either precludes the occur-
rence of another event under examination or fundamentally
alters the probability of occurrence of this other event. We have
used the more agnostic definition of time-to-first-event T and
type-of-first-event E, but there is no practical discrepancy. On the
other hand, the definition in [8] immediately connects to the topic
of the present subsection.

In subsection 5.2, we have discussed that the occurrence of a
competing risk fulfils the independent censoring assumption. The
consequence is that such an observed competing event may be
coded as a censoring for the analyses of the other event-specific
hazards. Note that these properties must be interpreted within
the time-to-first-event setting. For instance, consider the situation
of coding a first AE as a censoring for the analysis of the hazard of
death without prior AE. This must not be interpreted as an analysis
of the overall survival hazard or even for the hazard of death after
first AE. Such analyses may be achieved by including AE occur-
rence as time-dependent covariates in a Cox regression model.
Beyersmann et al. [9, Chapter 11] explain such analyses and their

connection to multistate models. Multistate models may be used
in this context to derive probability estimates [25].

This aspect is closely related to the momentary risk of recur-
rent AEs discussed in subsection 5.3. Recall that, for example,
using the IR for recurrent AEs by simply counting the number of
all observed AEs in the numerator does not only rely on a con-
stant hazard assumption but also assumes that the momentary
risk is not changed by previous AE events. On the other hand, the
Andersen-Gill extension of the Cox model allows to model the
impact of such previous events.

6. DISCUSSION

In general, simple incidence proportions should not be used for
estimating the probability of AE in the time-to-event setting,
unless vital and AE statuses are known for all patients. Indeed, AEs
can occur at any point in time during the patient’s time under
observation, which is not taken into account by the calculation
of crude rates. Moreover, in a time-to-event setting, a crude esti-
mator that ignores censoring will be biased. This is precisely the
reason why survival techniques like the Kaplan—Meier estimator
or Cox regression are used for efficacy outcomes. The same ratio-
nale applies to the analysis of AEs. Furthermore, AEs are always
subject to competing risks, that is, the occurrence of a certain AE
may be precluded by the main outcome of interest or another
fatal AE.

Guidelines on the statistical evaluation and the reporting of AEs
give mixed recommendations. ICH E9 on the statistical analysis of
AEs [1], ICH E3 on the statistical reporting of AEs [26], and also
the Council for International Organizations of Medical Sciences
working group on management of safety information from clin-
ical trials [27] state that incidences should be presented relating
the number of subjects experiencing an AE to the number of sub-
jects at risk and that, depending on the situation, survival analysis
or ‘life table’ methods should be considered for calculation. But
none of these guidelines mentions that competing risks have to
be taken into account and it remains unclear what kind of survival
analyses techniques are recommended exactly.

In the competing risks setting, the CIF - estimated
non-parametrically by the Aalen-Johansen estimator — is the
correct quantity for expressing the probability of AE. Moreover,
standard survival techniques for hazards that censor the com-
peting event are still valid, but incomplete analyses, still valid
because inference on the hazard of AE only counts AE events, but
incomplete as the probability to experience an AE depends on all
event-specific hazards. Thus, the competing event should also be
subject to such an analysis. However, the Kaplan-Meier estimator
that censors the competing event is not a valid estimator for the
probability of AE because it implicitly assumes that all patients
will eventually experience the AE. The IR of AE can be used to
estimate the hazard of AE assuming it to be constant. As for
the non-parametric or semi-parametric estimators, the IR of the
competing event should also be looked at. In our data example,
the constant event-specific hazards assumption was violated, but
the CIF of AE estimated within this model and evaluated at the
last observed AE time outperformed both the crude rate and the
inappropriate Kaplan-Meier estimator.

Comparison of (treatment) groups with respect to AE can be
performed via a proportional event-specific hazards model. It
reflects the direct effect of treatment on the instantaneous risk
of AE. For a complete understanding of the competing risks data,
the competing event should also be subject to such an analysis.

Copyright © 2016 John Wiley & Sons, Ltd.
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In contrast, the proportional subdistribution hazards model for
AE results in a direct comparison of (treatment) groups in terms
of the CIF of AE. In a sense, the latter model provides a summary
analysis, but this is only through the study of all event-specific
hazards that one can understand the shape of the CIF for the
event of interest [9]. For instance, analysing both event-specific
hazards as well as the subdistribution hazard is what is advocated
by guidelines on competing risks analysis [28].

We reiterate that censoring by a competing event is indepen-
dentin the sense that it retains the form of the competing process
intensity [19] but it is informative as it impacts probabilities. Thus,
analysing the hazard of AE (with the Nelson—Aalen estimator or
Cox models) by censoring the competing event is still valid, but
this analysis must be performed in turn for the hazard of death
without prior AE.

We finally note that the Nelson-Aalen estimator, IRs, and Cox
proportional hazards models generalise to recurrent AEs; the
basic idea being that the counting processes underpinning sur-
vival analysis techniques can count more than one event per
patient [18, Ch. 8].
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