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we work up and extend the methodology of Geweke and Singleton (1981) by proving a

multivariate central limit theorem for empirical Fourier transforms of the observable time

series. In an asymptotic regime with observation horizon tending to infinity, we employ

structural properties of multivariate chi-square distributions in order to construct asymptotic

critical regions for a vector of Wald statistics in DFMs, assuming that the model is identified

and model restrictions are testable. A model-based bootstrap procedure is proposed for

approximating the joint distribution of such a vector for finite sample sizes. Examples

of important multiple test problems in DFMs demonstrate the relevance of the proposed

methods for practical applications.
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1. INTRODUCTION AND MOTIVATION

Dynamic factor models are multivariate time series models of the form

(1.1) X(t) =
∞
∑

s=−∞

Λ(s) f(t− s) + ε(t), 1 ≤ t ≤ T.

Thereby, X = (X(t) : 1 ≤ t ≤ T ) denotes a p-dimensional, covariance-stationary stochastic

process in discrete time with mean zero, f(t) = (f1(t), . . . , fk(t))
> with k < p denotes a k-

dimensional vector of so-called ”common factors” and ε(t) = (ε1(t), . . . , εp(t))
> denotes a p-

dimensional vector of ”specific factors”, to be regarded as error or remainder terms. Both f(t)

and ε(t) are assumed to be centered and the error terms are modeled as noise in the sense

that they are mutually uncorrelated at every time point and, in addition, uncorrelated with

f(t) at all leads and lags. The error terms ε(t) may, however, exhibit non-trivial (weak) serial

autocorrelations. The model dimensions p and k are assumed to be fixed, while the sample size

T may tend to infinity.

The underlying interpretation of model (1.1) is that the dynamic behavior of the process

X can already be described well (or completely) by a lower-dimensional ”latent” process. The

entry (i, j) of the matrix Λ(s) quantitatively reflects the influence of the j-th common factor
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at lead or lag s, respectively, on the i-th component of X(t), where 1 ≤ i ≤ p and 1 ≤ j ≤ k.

Recently, Park et al. (2009) and van Bömmel et al. (2013) studied the case where factor loadings

may depend on covariates and discussed applications in economics and neuroimaging.

A special case of model (1.1) results if the influence of the common factors on X is itself

without dynamics, i. e., if the model simplifies to

(1.2) X(t) = Λ f(t) + ε(t), 1 ≤ t ≤ T.

Peña and Box (1987) were concerned with methods for the determination of the (number

of) common factors in a factor model of the form (1.2) and derived a canonical transformation

allowing a parsimonious representation of X(t) in (1.2) in terms of the common factors. Sta-

tistical inference in static factor models for longitudinal data has been studied, for instance, by

Jöreskog (1969) who developed an algorithm for computing maximum likelihood estimators in

models with factorial structure of the covariance matrix of the observables. For further references

and developments regarding the theory and the interrelations of different types of (dynamic) fac-

tor models we defer the reader to Breitung and Eickmeier (2005), Hallin and Lippi (2013) and

references therein.

Statistical inference methods for dynamic factor models typically consider the time series

in the frequency domain, cf., among others, Forni et al. (2000, 2009) and references therein,

and analyze decompositions of the spectral density matrix of X. Robinson (1991) discussed

nonparametric estimators of the latter matrix by kernel smoothing. In a parametric setting,

Geweke and Singleton (1981) developed a likelihood-based framework for statistical inference in

dynamic factor models by making use of central limit theorems for time series regression in the

frequency domain by Hannan (1973). Their inferential considerations rely on the asymptotic

normality of the maximum likelihood estimator (MLE) ϑ̂ of the (possibly very high-dimensional)

parameter vector ϑ in the frequency-domain representation of the model. We will provide more

details in Section 3. To this end, it is essential that the time series model (1.1) is identified in

the sense of Geweke and Singleton (1981), which we will assume throughout the paper. If the

model is not identified, the individual contributions of the common factors cannot be expressed

unambiguously and, consequently, testing for significance or the construction of confidence sets

for elements of ϑ is obviously not informative.

In the present work, we will extend the methodology by Geweke and Singleton (1981). Specif-

ically, we will be concerned with simultaneous statistical inference in dynamic factor models under

the likelihood framework by considering families of linear hypotheses regarding parameters of the

frequency-domain representation of (1.1). As we will demonstrate in Section 3, the following two

problems, which are of practical interest, are examples where our methodology applies.

Problem 1 (Which of the specific factors have a non-trivial autocorrelation structure?).

Solving this problem is substantially more informative than just testing a single specific factor

for trivial autocorrelations as considered by Geweke and Singleton (1981). Presence of many

colored noise components may hint at further hidden common factors and therefore, the solution

to Problem 1 can be utilized for the purpose of model diagnosis in the spirit of a residual analysis.

Problem 2 (Which of the common factors have a lagged influence on X?). In many economic

applications, it is informative if certain factors (such as interventions) have an instantaneous or
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a lagged effect. By solving Problem 2, this can be answered for several of the common factors

simultaneously, accounting for the multiplicity of the test problem.

Solving problems of these types requires multiple testing of several hypotheses simultaneously.

In our case, likelihood ratio statistics (or, asymptotically equivalently, Wald statistics) will build

the basis for the respective decision rules.

The paper is organized as follows. In Section 2, we provide a brief introduction to multiple

testing, especially under positive dependence. In particular, we will analyze structural proper-

ties of multivariate chi-square distributions and provide a numerical assessment of type I error

control for standard multiple tests when applied to vectors of multivariate chi-square distributed

test statistics. This section is meant to contribute to multiple testing theory and practice in

general. Although it is known for a longer time that the components of a multivariate chi-square

distributed random vector necessarily exhibit pairwise positive correlations, such vectors in gen-

eral do not fulfill higher-order dependency concepts like multivariate total positivity of order 2

(MTP2), cf. Example 3.2. in Karlin and Rinott (1980). However, for instance the extremely

popular linear step-up test by Benjamini and Hochberg (1995) for control of the false discovery

rate (FDR) is only guaranteed to keep the FDR level strictly if the vector of test statistics or

p-values, respectively, is MTP2 (or at least positively regression dependent on subsets, PRDS).

Hence, a question of general interest is how this and related tests behave for multivariate chi-

square distributed vectors of test statistics. Section 3 demonstrates how such vectors of test

statistics arise naturally in connection with likelihood-based solutions to simultaneous inference

problems for dynamic factor models of the form (1.1) when the observation horizon T tends to

infinity. To this end, we revisit and extend the methodology of Geweke and Singleton (1981).

Specifically, we prove a multivariate central limit theorem for empirical Fourier transforms of the

observable time series. The asymptotic normality of these Fourier transforms leads to the asymp-

totic multivariate chi-square distribution of the considered vector of Wald statistics. In Section

4, we propose a model-based resampling scheme for approximating the finite-sample distribution

of this vector of test statistics. We conclude with a discussion in Section 5.

2. MULTIPLE TESTING UNDER POSITIVE DEPENDENCE

The general setup of multiple testing theory assumes a statistical model (Ω,F , (Pϑ)ϑ∈Θ)

parametrized by ϑ ∈ Θ and is concerned with testing a family H = (Hi, i ∈ I) of hypotheses

regarding the parameter ϑ with corresponding alternatives Ki = Θ \ Hi, where I denotes an

arbitrary index set. We identify hypotheses with subsets of the parameter space throughout the

paper. Let ϕ = (ϕi, i ∈ I) be a multiple test procedure for H, meaning that each component

ϕi, i ∈ I is a (marginal) test for the test problem Hi versus Ki in the classical sense. Moreover,

let I0 ≡ I0(ϑ) ⊆ I denote the index set of true hypotheses in H and V (ϕ) the number of

false rejections (type I errors) of ϕ, i. e., V (ϕ) =
∑

i∈I0
ϕi. The classical multiple type I error

measure in multiple hypothesis testing is the family-wise error rate, FWER for short, and can

(for a given ϑ ∈ Θ) be expressed as FWERϑ(ϕ) = Pϑ(V (ϕ) > 0). The multiple test ϕ is

said to control the FWER at a pre-defined significance level α, if supϑ∈Θ FWERϑ(ϕ) ≤ α. A

simple, but often conservative method for FWER control is based on the union bound and is

referred to as Bonferroni correction in the multiple testing literature. Assuming that |I| = m,

the Bonferroni correction carries out each individual test ϕi, i ∈ I, at (local) level α/m. The
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“Bonferroni test” ϕ = (ϕi, i ∈ I) then controls the FWER. In case that joint independence of all

m marginal test statistics can be assumed, the Bonferroni-corrected level α/m can be enlarged

to the “Šidák-corrected” level 1− (1−α)1/m > α/m leading to slightly more powerful (marginal)

tests. Both the Bonferroni and the Šidák test are single-step procedures, meaning that the same

local significance level is used for all m marginal tests.

An interesting other class of multiple test procedures are stepwise rejective tests, in particular

step-up-down tests, introduced by Tamhane et al. (1998). They are most conveniently described

in terms of p-values p1, . . . , pm corresponding to test statistics T1, . . . , Tm. It goes beyond the

scope of this paper to discuss the notion of p-values in depth. Therefore, we will restrict attention

to the case that every individual null hypothesis is simple, the distribution of every Ti, 1 ≤ i ≤ m,

under Hi is continuous and each Ti tends to larger values under alternatives. The test statistics

considered in Section 3 fulfill these requirements, at least asymptotically. Then, we can calculate

(observed) p-values by pi = 1−Fi(ti), 1 ≤ i ≤ m, where Fi is the cumulative distribution function

(cdf) of Ti under Hi and ti denotes the observed value of Ti. The transformation with the upper

tail cdf brings all test statistics to a common scale, because each p-value is supported on [0, 1].

Small p-values are in favor of the corresponding alternatives.

Definition 1 (Step-up-down test of order λ in terms of p-values, cf. Finner et al., 2012).

Let p1:m < p2:m < . . . < pm:m denote the ordered p-values for a multiple test problem. For

a tuning parameter λ ∈ {1, . . . ,m} a step-up-down test ϕλ = (ϕ1, . . . , ϕm) (say) of order λ

based on some critical values α1:m ≤ · · · ≤ αm:m is defined as follows. If pλ:m ≤ αλ:m, set

j∗ = max{j ∈ {λ, . . . ,m} : pi:m ≤ αi:m for all i ∈ {λ, . . . , j}}, whereas for pλ:m > αλ:m, put

j∗ = sup{j ∈ {1, . . . , λ − 1} : pj:m ≤ αj:m} (sup ∅ = −∞). Define ϕi = 1 if pi ≤ αj∗:m and

ϕi = 0 otherwise (α−∞:m = −∞).

A step-up-down test of order λ = 1 or λ = m, respectively, is called step-down (SD) or

step-up (SU) test, respectively. If all critical values are identical, we obtain a single-step test.

In connection with control of the FWER, SD tests play a pivotal role, because they can often

be considered a shortcut of a closed test procedure, cf. Marcus et al. (1976). For example, the

famous SD procedure of Holm (1979) employing critical values αi:m = α/(m− i+ 1), 1 ≤ i ≤ m

is, under the assumption of a complete system of hypotheses, a shortcut of the closed Bonferroni

test, see, for instance, Sonnemann (2008), and hence controls the FWER at level α.

In order to compare concurring multiple test procedures, also a type II error measure or,

equivalently, a notion of power is required under the multiple testing framework. To this end,

we define I1 ≡ I1(ϑ) = I \ I0, m1 = |I1|, S(ϕ) =
∑

i∈I1
ϕi and refer to the expected proportion of

correctly detected alternatives, i. e., powerϑ(ϕ) = Eϑ[S(ϕ)/max(m1, 1)], as the multiple power of

ϕ under ϑ. If the structure of ϕ is such that ϕi = 1pi≤t∗ for a common, possibly data-dependent

threshold t∗, then the multiple power of ϕ is increasing in t∗. For step-up-down tests, this entails

that index-wise larger critical values lead to higher multiple power.

Gain in multiple power under the constraint of FWER control is only possible if certain

structural assumptions for the joint distribution of (p1, . . . , pm)> or, equivalently, (T1, . . . , Tm)>

can be established, cf. Example 1 below. In particular, positive dependency among p1, . . . , pm in

the sense of MTP2, see Karlin and Rinott (1980), or PRDS, see Benjamini and Yekutieli (2001),

allows for enlarging the critical values (αi:m)1≤i≤m. To give a specific example, Sarkar (1998)

proved that the critical values αi:m = iα/m, 1 ≤ i ≤ m can be used as the basis for an FWER-
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controlling closed test procedure, provided that the joint distribution of p-values is MTP2. These

critical values have originally been proposed by Simes (1986) in connection with a global test for

the intersection hypothesis H0 =
⋂m

i=1Hi and are therefore often referred to as Simes’ critical

values. Hommel (1988) worked out a shortcut for the aforementioned closed test procedure based

on Simes’ critical values; we will refer to this multiple test as ϕHommel in the remainder of this

work.

Simes’ critical values also play an important role in connection with control of the false discov-

ery rate (FDR). The FDR is a relaxed type I error measure suitable for large systems of hypothe-

ses. Formally, it is defined as FDRϑ(ϕ) = Eϑ[FDP(ϕ)], where FDP(ϕ) = V (ϕ)/max(R(ϕ), 1)

with R(ϕ) = V (ϕ) + S(ϕ) denoting the total number of rejections of ϕ under ϑ. The ran-

dom variable FDP(ϕ) is called the false discovery proportion. The meanwhile classical linear

step-up test by Benjamini and Hochberg (1995), ϕLSU (say), is an SU test with Simes’ crit-

ical values. Under joint independence of all p-values, it provides FDR-control at (exact) level

m0α/m, where m0 = m−m1, see, for instance, Finner et al. (2009). Independently of each other,

Benjamini and Yekutieli (2001) and Sarkar (2002) proved that supϑ∈Θ FDRϑ(ϕ
LSU) ≤ m0α/m if

the joint distribution of (p1, . . . , pm)> is PRDS on I0 (notice that MTP2 implies PRDS on any

subset). The multiple test ϕLSU is the by far most popular multiple test for FDR control and is

occasionally even referred to as the FDR procedure in the literature.

2.1 MULTIVARIATE CHI-SQUARE DISTRIBUTED TEST STATISTICS

Asymptotically, the vectors of test statistics that are appropriate for testing the hypotheses we

are considering in the present work follow a multivariate chi-squared distribution in the sense of

the following definition.

Definition 2. Let m ≥ 2 and ~ν = (ν1, . . . , νm)> be a vector of positive integers. Let

(Z1,1, . . . , Z1,ν1 , Z2,1, . . . , Z2,ν2 , . . . , Zm,1, . . . , Zm,νm) denote
∑m

k=1 νk jointly normally distributed

random variables with joint correlation matrix R = (ρ(Zk1,`1 , Zk2,`2) : 1 ≤ k1, k2 ≤ m, 1 ≤ `1 ≤
νk1 , 1 ≤ `2 ≤ νk2) such that for any 1 ≤ k ≤ m the random vector Zk = (Zk,1, . . . , Zk,νk)

> has a

standard normal distribution on Rνk . Let Q = (Q1, . . . , Qm)>, where

(2.1) Qk =

νk
∑

`=1

Z2
k,` for all 1 ≤ k ≤ m.

Then we call the distribution of Q a multivariate (central) chi-square distribution (of generalized

Wishart-type) with parameters m, ~ν and R and write Q ∼ χ2(m,~ν,R).

Well-known special cases arise if all marginal degrees of freedom are identical, i. e., ν1 =

ν2 = . . . = νm ≡ ν and the vectors (Z1,1, . . . , Zm,1)
>, (Z1,2, . . . , Zm,2)

>, . . ., (Z1,ν , . . . , Zm,ν)
> are

independent random vectors. If, in addition, the correlation matrices among them components of

these latter ν random vectors are all identical and equal to Σ ∈ Rm×m (say), then the distribution

of Q is that of the diagonal elements of a Wishart-distributed random matrix S ∼ Wm(ν,Σ).

This distribution is for instance given in Definition 3.5.7 of the textbook by Timm (2002). The

case of potentially different correlation matrices Σ1, . . . ,Σν has been studied by Jensen (1970).

Multivariate chi-square distributions play an important role in several multiple testing problems.

In Section 3 below, they occur as limiting distributions of vectors of Wald statistics. Further
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applications comprise statistical genetics (analysis of many contingency tables simultaneously)

and multiple tests for Gaussian variances; see for instance Dickhaus and Stange (2012) for more

details.

The following lemma shows that among the components of a (generalized) multivariate chi-

square distribution only non-negative pairwise correlations can occur.

Lemma 1. Let Q ∼ χ2(m,~ν,R). Then, for any pair of indices 1 ≤ k1, k2 ≤ m it holds

(2.2) 0 ≤ Cov(Qk1 , Qk2) ≤ 2
√
νk1 νk2 .

Proof. Without loss of generality, assume k1 = 1 and k2 = 2. Simple probabilistic calculus now

yields

Cov(Q1, Q2) = Cov





ν1
∑

i=1

Z2
1,i,

ν2
∑

j=1

Z2
2,j





=

ν1
∑

i=1

ν2
∑

j=1

Cov(Z2
1,i, Z

2
2,j) = 2

ν1
∑

i=1

ν2
∑

j=1

ρ2(Z1,i, Z2,j) ≥ 0.

The upper bound in (2.2) follows directly from the Cauchy-Schwarz inequality, because the

variance of a chi-squared distributed random variable with ν degrees of freedom equals 2ν.

In view of the applicability of multiple test procedures for positively dependent test statistics

that have been discussed in Section 2, Lemma 1 points into the right direction. However, as

outlined in the introduction, the MTP2 property for multivariate chi-square or, more generally,

multivariate gamma distributions could up to now only be proved for special cases as, for ex-

ample, exchangeable gamma variates (cf. Example 3.5. in Karlin and Rinott (1980), see also

Sarkar and Chang (1997) for applications of this type of multivariate gamma distributions in

multiple hypothesis testing). Therefore and especially in view of the immense popularity of ϕLSU

we conducted an extensive simulation study of FWER and FDR control of multiple tests suit-

able under MTP2 (or PRDS) in the case that the vector of test statistics follows a multivariate

chi-square distribution in the sense of Definition 2. Specifically, we investigated the shortcut test

ϕHommel for control of the FWER and the linear step-up test ϕLSU for control of the FDR and

considered the following correlation structures among the variates (Zk,`∗ : 1 ≤ k ≤ m) for any

given 1 ≤ `∗ ≤ max{νk : 1 ≤ k ≤ m}. (Since only the coefficients of determination enter the

correlation structure of the resulting chi-square variates, we restricted our attention to positive

correlation coefficients among the Zk,`.)

1. Autoregressive, AR(1): ρij = ρ|i−j|, ρ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

2. Compound symmetry (CS): ρij = ρ+ (1− ρ)1{i=j}, ρ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

3. Toeplitz: ρij = ρ|i−j|+1, with ρ1 ≡ 1 and ρ2, ..., ρm∗ randomly drawn from the interval

[0.1, 0.9].

4. Unstructured (UN): The ρij are elements of a normalized realization of a Wishart-distributed

random matrix with m degrees of freedom and diagonal expectation the elements of which

were randomly drawn from [0.1, 0.9]m.
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In all four cases, we have ρij = Cov(Zi,`∗ , Zj,`∗), 1 ≤ i, j ≤ m∗, where m∗ = |{1 ≤ k ≤
m : νk ≥ `∗}|. The marginal degrees of freedom (νk : 1 ≤ k ≤ m) have been drawn randomly

from the set {1, 2, . . . , 100} for every simulation setup. In this, we chose decreasing sampling

probabilities of the form γ/(ν+1), 1 ≤ ν ≤ 100, where γ denotes the norming constant, because

we were most interested in the small-scale behavior of ϕHommel and ϕLSU under dependency.

For the number of marginal test statistics, we considered m ∈ {2, 5, 10, 50, 100} and for the

number of true hypotheses the respective values of m0 provided in Tables 1 - 4. For all false

hypotheses, we set the corresponding p-values to zero, because the resulting so-called ”Dirac-

uniform configurations” are assumed to be least favorable for ϕHommel and ϕLSU, see, for instance,

Finner et al. (2009) and Blanchard et al. (2011). For every simulation setup, we performed

M = 1, 000 Monte Carlo repetitions of the respective multiple test procedures and estimated

the FWER or FDR, respectively, by relative frequencies or means, respectively. We present our

results in Tables 1 - 4 in the appendix.

Remark 1. For carrying out these large-scale simulation studies efficiently, we made use

of the simulation platform provided by the µTOSS software for multiple hypothesis testing, see

Blanchard et al. (2010).

To summarize our findings, ϕHommel behaved remarkably well over the entire range of simu-

lation setups. Only in a few cases, it violated the target FWER level slightly, but one has to

keep in mind that Dirac-uniform configurations correspond to extreme deviations from the null

hypotheses which are not expected to be encountered in practical applications. In line with the

results by Benjamini and Yekutieli (2001) and Sarkar (2002), ϕLSU controlled the FDR well at

level m0α/m (compare with the bound reported at the end of Section 2). One could try to dimin-

ish the resulting conservativity for small values of m0 either by pre-estimating m0 and plugging

the estimated value m̂0 into the nominal level, i. e., replacing α by mα/m̂0, or by employing

other sets of critical values. For instance, Finner et al. (2009) and Finner et al. (2012) developed

non-linear critical values aiming at full exhaustion of the FDR level for any value of m0 under

Dirac-uniform configurations. However, both strategies are up to now only guaranteed to work

well under the assumption of independent p-values and it would need deeper investigations of

their validity under positive dependence. Here, we can at least report that we have no indications

that ϕLSU may not keep the FDR level under our framework, militating in favour of applying

this test for FDR control under the framework that we will consider in Section 3.

Example 1 (Communicated to the first author by Klaus Straßburger). Let us emphasize

here that the observed control of FWER and FDR is a specific property of positively dependent

test statistics. To give a counterexample, consider m = 2 and two normally distributed test

statistics T1 and T2, where Ti ∼ N (µi, 1), i = 1, 2, and ρ(T1, T2) = −1. Let Hi : {µi ≤ 0} and,

consequently, Ki : {µi > 0}, i = 1, 2, and notice that T2 = −T1 almost surely under µ1 = µ2 = 0,

with corresponding probability measure P(0,0). A single-step multiple test at local level αloc. for

this problem is given by ϕ = (ϕ1, ϕ2) with ϕi = 1[Φ−1(1−αloc.),∞)(Ti), i = 1, 2, where Φ denotes

the cdf of the standard normal distribution.

Now, in order to control the FWER at level α with ϕ, we have to choose αloc. = α/2, because

FWER(0,0)(ϕ) = P(0,0)

(

T1 ≥ Φ−1(1− αloc.) ∨ T2 ≥ Φ−1(1− αloc.)
)

= P(0,0)

(

T1 ≥ Φ−1(1− αloc.)
)

+ P(0,0)

(

T1 ≤ −Φ−1(1− αloc.)
)

= 2αloc..
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Remark 2. A different way to tackle the aforementioned problem of lacking higher-order

dependency properties is not to rely on the asymptotic Q ∼ χ2(m,~ν,R) (where R is unspecified),

but to approximate the finite-sample distribution of test statistics, for example by means of ap-

propriate resampling schemes. Resampling-based SD tests for FWER control have been worked

out by Troendle (1995) and Romano and Wolf (2005a,b). Resampling-based FDR control can

be achieved by applying the methods by Yekutieli and Benjamini (1999), Troendle (2000), or

Romano et al. (2008), among others. We will return to resampling-based multiple testing in the

context of DFMs in Section 4.

3. MULTIPLE TESTING IN DYNAMIC FACTOR MODELS

In order to maintain a self-contained presentation, we first briefly summarize some essential

techniques and results discussed in previous literature.

Lemma 2. The spectral density matrix SX (say) of the observable process X can be decom-

posed as

(3.1) SX(ω) = Λ̃(ω)Sf (ω)Λ̃(ω)
′ + Sε(ω), −π ≤ ω ≤ π,

where Λ̃(ω) =
∑∞

s=−∞ Λ(s) exp(−iωs) and the prime stands for transposition and conjugation.

Proof. The assertion follows immediately by plugging the representation

ΓX(u) = E[X(t)X(t+ u)>] =
∞
∑

s=−∞

Λ(s)
∞
∑

v=−∞

Γf (u+ s− v)Λ(v)> + Γε(u)

for the autocovariance function of X into the formula

SX(ω) = (2π)−1
∞
∑

u=−∞

ΓX(u) exp(−iωu).

The identifiability conditions mentioned in Section 1 can be plainly phrased by postulating

that the representation in (3.1) is unique (up to scaling). All further methods in this section

rely on the assumption of an identified model and on asymptotic considerations as T → ∞.

To this end, we utilize a localization technique which is due to Hannan (1970, 1973); see also

Geweke and Singleton (1981). We consider a scaled version of the empirical (finite) Fourier

transform of X. Evaluated at harmonic frequencies, it is given by

X̃(ωj) = (2πT )−1/2
T
∑

t=1

X(t) exp(itωj), where ωj = 2πj/T, −T/2 < j ≤ bT/2c.

For asymptotic inference with respect to T , we impose the following additional assumptions.

Assumption 1. There exist B disjoint frequency bands Ω1, . . . ,ΩB, such that SX can be

assumed approximately constant and different from zero within each of these bands. Let ω(b) 6∈
{0, π} denote the center of the band Ωb, 1 ≤ b ≤ B.
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Notice that Geweke and Singleton (1981) have made an assumption similar to Assumption

1. As in Hannan (1970) and in their work, we will denote by nb = nb(T ) a number of harmonic

frequencies (ωj,b)1≤j≤nb
of the form 2πju/T which are as near as possible to ω(b), 1 ≤ b ≤ B. In

this, the integers ju, 1 ≤ u ≤ nb, in ωj,b = 2πju/T are chosen in successive order of closeness to

the center. To derive a weak convergence result for (X̃(ωj,b))j one of the following two additional

assumptions, which are due to Hannan (1970, 1973), is needed.

Assumption 2. The process X is a generalized linear process of the form

(3.2) X(t) =

∞
∑

j=−∞

A(j)ε(t− j),

where the process (εt)t is independent and identically distributed (i.i.d.) white noise and A(j) ∈
Rp×p fulfills

∑

j ‖A(j)‖2 < ∞.

Assumption 3. The best linear predictor of X(t) is the best predictor of X(t), both in the

least squares sense, given the past of the process.

Notice that under Assumption 3 we can also represent X as a linear process of the form

(3.3) X(t) =

∞
∑

j=0

A(j)e(t− j),

where A(j) ∈ Rp×p and the process (et)t is uncorrelated white noise, see Hannan (1970). The

representations of X in (3.2) and (3.3) justify the term ”white noise factor score model” (WNFS)

which has been used, for instance, by Nesselroade et al. (2009).

Throughout the remainder, we denote convergence in distribution by
D→.

Theorem 1. Suppose that Assumption 1 and one of the following two conditions hold true:

(a) Assumption 2 is fufilled.

(b) Assumption 3 holds and the A(j) of the representation (3.3) fulfill

(3.4)
∞
∑

j=0

‖A(j)‖ < ∞.

Then we have weak convergence

(3.5) ((X̃(ωj,b))1≤j≤nb
, 0N)

D→ (Zj,b)j∈N, min(nb(T ), T ) → ∞,

where the left-hand side of (3.5) denotes the natural embedding of (X̃(ωj,b))1≤j≤nb
into (Rp)N and

(Zj,b)j∈N is a sequence of independent random vectors, each of which follows a complex normal

distribution with mean zero and covariance matrix SX(ω(b)).

Proof. Following (Billingsley, 1968, p. 29 f.), it suffices to show convergence of finite-dimensional

margins. Recall that the indices ju, 1 ≤ u ≤ nb, are chosen in successive order of closeness of

ωj,b = 2πju/T to the center ω(b). Hence, under Assumptions 1 and 2, this convergence follows

from Theorem 4.13 in Hannan (1970) together with the continuous mapping theorem. In the

other case, the convergence in (3.5) is a consequence of Theorem 3 in Hannan (1973), again

applied together with the continuous mapping theorem.
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Remark 3.

1. It is well known that (3.4) entails ergodicity of X.

2. Actually, Theorem 1 holds under slightly weaker conditions; see Hannan (1973) for details.

Moreover, Peligrad and Wu (2010) have recently studied the weak convergence of the finite

Fourier transform X̃ under different assumptions.

3. While (3.3) or (3.2) may appear structurally simpler than (1.1), notice that the involved

coefficient matrices A(j) have (potentially much) higher dimensionality than Λ(s) in (1.1).

4. In practice, it seems that the bands Ωb as well as the numbers nb have to be chosen adap-

tively. To avoid frequencies at the boundary of Ωb, choosing nb = o(T ) seems appropriate.

Let the parameter vector ϑb contain all d = 2pk + k2 + p distinct parameters in Λ̃(ω(b)),

Sf (ω
(b)) and Sε(ω

(b)), where each of the (in general) complex elements in Λ̃(ω(b)) and Sf (ω
(b)) is

represented by a pair of real components in ϑb, corresponding to its real part and its imaginary

part. The full model dimension is consequently equal to Bd. For convenience and in view of

Lemma 2, we write with slight abuse of notation ϑb = vech(SX(ω(b))), and ivech(ϑb) = SX(ω(b)).

The above results motivate to study the (local) likelihood function of the parameter ϑb for a

given realization X = x of the process (from which we calculate X̃ = x̃). In frequency band Ωb,

it is given by

`b(ϑb,x) = π−p×nb |ivech(ϑb)|−nb exp



−
nb
∑

j=1

x̃(ωj,b)
′ ivech(ϑb)

−1 x̃(ωj,b)



 ;

see Goodman (1963). Optimization of the B local (log-) likelihood functions requires to solve a

system of d non-linear (in the parameters contained in ϑb) equations of the form

2S−1
X

(SX − S)S−1
X

Λ̃Sf = 0,

2Λ̃′S−1
X

(SX − S)S−1
X

Λ̃ = 0,

diag(S−1
X

(SX − S)S−1
X

) = 0,

where we dropped the argument ω(b) in SX, Λ̃, and Sf , and introduced

S = (nb)
−1

nb
∑

j=1

x̃(ωj,b)x̃(ωj,b)
′.

To this end, the algorithm originally developed by Jöreskog (1969) for static factor models

can be used (where formally covariance matrices are replaced by spectral density matrices, cf.

Geweke and Singleton (1981), and complex numbers are represented by two-dimensional vectors

in each optimization step). The algorithm delivers not only the numerical value of the maximum

likelihood estimator (MLE) ϑ̂b, but additionally an estimate of the covariance matrix Vb (say) of√
nbϑ̂b. In view of Theorem 1 and standard results from likelihood theory (cf., e. g., Section 12.4

in Lehmann and Romano, 2005) concerning asymptotic normality of MLEs, it appears reasonable

to assume that

(3.6)
√
nb(ϑ̂b − ϑb)

D→ Tb ∼ Nd(0, Vb), 1 ≤ b ≤ B
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as min(nb(T ), T ) → ∞, where the multivariate normal limit random vectors Tb are independent

for 1 ≤ b ≤ B, and that V̂b is a consistent estimator of Vb, which we will assume throughout the

remainder. This, in connection with the fact that the vectors ϑ̂b, 1 ≤ b ≤ B, are asymptotically

jointly uncorrelated with each other, is very helpful for testing linear (point) hypotheses. Such

hypotheses are of the form H : Cϑ = ξ with a contrast matrix C ∈ Rr×Bd, ξ ∈ Rr and ϑ

consisting of all elements of all the vectors ϑb. Geweke and Singleton (1981) proposed the usage

of Wald statistics in this context. The Wald statistic for testing H is given by

(3.7) W = N(Cϑ̂− ξ)>(CV̂ C>)+(Cϑ̂− ξ),

where N =
∑B

b=1 nb, V̂ is the block matrix built up from the band-specific matrices NV̂b/nb,

1 ≤ b ≤ B, and A+ denotes the Moore-Penrose pseudo inverse of a matrix A.

Theorem 2. Under the above assumptions, W is asymptotically χ2-distributed with rank(C)

degrees of freedom under the null hypothesis H, provided that V is positive definite and N/nb ≤
K < ∞ for all 1 ≤ b ≤ B.

Proof. The assertion follows from basic central limit theorems for quadratic forms; see, for ex-

ample, Theorem 9.2.2 in Rao and Mitra (1971) or Theorem 3.1. in Pauly et al. (2012).

In the remainder of this section, we return to the two exemplary simultaneous statistical

inference problems outlined in Problems 1 and 2 and demonstrate that they can be formalized by

families of linear hypotheses regarding (components of) ϑ which in turn can be tested employing

the statistical framework that we have considered in Section 2.

Lemma 3 (Problem 1 revisited.). In the notational framework of Section 2, we have m = p,

I = {1, . . . , p} and for all i ∈ I we can consider the linear hypothesis Hi : CDunnett sεi = 0. The

contrast matrix CDunnett is the ”multiple comparisons with a control” contrast matrix with B − 1

rows and B columns, where in each row j the first entry equals +1, the (j + 1)-th entry equals

−1 and all other entries are equal to zero. The vector sεi ∈ RB consists of the values of the

spectral density matrix Sε corresponding to the i-th noise component, evaluated at the B centers

(ω(b) : 1 ≤ b ≤ B) of the chosen frequency bins. Denoting the subvector of ϑ̂ that corresponds to

sεi by ŝεi , the i-th Wald statistic is given by

Wi = (CDunnett ŝεi)
>
[

CDunnettV̂εiC
>
Dunnett

]+
(CDunnett ŝεi),

where V̂εi = diag(σ̂2
εi(ω

(b)) : 1 ≤ b ≤ B). Then, under Hi, Wi asymptotically follows a χ2-

distribution with B − 1 degrees of freedom if the corresponding limit matrix Vεi is assumed to be

positive definite. Considering the vector W = (W1, . . . ,Wp)
> of all p Wald statistics correspond-

ing to the p specific factors in the model, we finally have W
asympt.∼ χ2(p, (B − 1, . . . , B − 1)>, R)

under the intersection H0 of the p hypotheses H1, . . . , Hp, with some correlation matrix R. This

allows to employ the multiple tests considered in Section 2 for solving Problem 1.

Lemma 4 (Problem 2 revisited.). As done by Geweke and Singleton (1981), we formalize the

hypothesis that common factor j has a purely instantaneous effect on Xi, 1 ≤ j ≤ k, 1 ≤ i ≤ p,

in the spectral domain by

Hij : |Λ̃ij |2 is constant across the B frequency bands.
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In an analogous manner to the derivations in Lemma 3, the contrast matrix CDunnett can be used

as the basis to construct a Wald statistic Wij. The vector W = (Wij : 1 ≤ i ≤ p, 1 ≤ j ≤ k)

then asymptotically follows a multivariate chi-square distribution with B − 1 degrees of freedom

in each marginal under the corresponding null hypotheses and we can proceed as mentioned in

Lemma 3.

Many other problems of practical relevance can be formalized analogously by making use of

linear contrasts and thus, our framework applies to them, too. Furthermore, the hypotheses of

interest may also refer to different subsets of {1, . . . , B}. In such a case, the marginal degrees of

freedom for the test statistics are not balanced, as considered in the general Definition 2 and in

our simulations reported in Section 2.1.

4. FINITE-SAMPLE BOOTSTRAP APPROXIMATON

It is well known that the convergence of Wald-type statistics to their asymptotic χ2-distribution

is rather slow, see Pauly et al. (2012) and references therein. To address this problem and to

make use of the actual dependency structure of W in the multiple test procedure, we propose a

model-based bootstrap approximation of the finite-sample distribution of W in (3.7), given by

the following algorithm.

1. Given the data X = x, calculate in each band Ωb the quantities ϑ̂b and V̂b.

2. For all 1 ≤ b ≤ B, generate (pseudo) random numbers which behave like realizations of

independent random variables Z∗
1,b, . . . , Z

∗
nb,b

i.i.d.∼ Nd(ϑ̂b, V̂b).

3. For all 1 ≤ b ≤ B, calculate ϑ̂∗
b = n−1

b

∑nb

j=1 Z
∗
j,b and V̂ ∗

b = n−1
b

∑nb

j=1(Z
∗
j,b− ϑ̂∗

b)(Z
∗
j,b− ϑ̂∗

b)
>.

4. Calculate W ∗ = N(ϑ̂∗ − ϑ̂)>C>(CV̂ ∗C>)+C(ϑ̂∗ − ϑ̂), where ϑ̂∗ and V̂ ∗ are constructed in

analogy to ϑ̂ and V̂ .

5. Repeat steps 2. - 4. M times to obtain M pseudo replicates of W ∗ and approximate the

distribution of W by the empirical distribution of these pseudo replicates.

The heuristic justification for this algorithm is as follows. Due to Theorem 1 and the com-

plemental Jöreskog algorithm, it is appropriate to approximate the empirical Fourier transforms

in the band Ωb by Z∗
1,b, . . . , Z

∗
nb,b

. Moreover, to capture the structure of W , we build the MLEs

ϑ̂∗ and V̂ ∗ of the mean and the covariance matrix, respectively, also in this resampling model.

Furthermore, for finite sample sizes it seems more suitable to approximate the distribution of the

quadratic form W by a statistic of the same structure. Throughout the remainder, we denote

convergence in probability by
p−→.

Theorem 3. Under the assumptions of Theorem 2, it holds

(4.1) sup
w∈R

|Prob(W ∗ ≤ w|X)− Prob(W ≤ w|H)| p−→ 0,

where Prob(W ∗ ≤ ·|X) denotes the conditional cumulative distribution function (cdf) of W ∗

given X and Prob(W ≤ ·|H) the cdf of W under H : Cϑ = ξ.
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Proof. Throughout ρk stands for a distance that metrizes weak convergence on Rk, k ∈ N, for

example the Prohorov distance. Moreover, for a random variable T we denote by L(T ) and

L(T |X) the distribution and conditional distribution of T given X, respectively. Note, that we

have by assumption convergences in probability of the conditional mean and variance of Z∗
1,b, i.

e.,

E(Z∗
1,b|X) = ϑ̂b

p−→ ϑb and Var(Z∗
1,b|X) = V̂b

p−→ Vb.

Moreover, for each fixed 1 ≤ b ≤ B and fixed data X, the sequence of random vectors (Z∗
j,b)j

is row-wise i.i.d. with lim supE(‖Z∗
1,b‖4|X) < ∞ almost surely. Hence an application of Lya-

punov’s multivariate Central Limit Theorem together with Slutzky’s Theorem implies conditional

convergence in distribution given the data X in the sense that

ρd

(

L(√nb(ϑ̂
∗
b − ϑ̂b)|X),L(Tb)

)

p−→ 0

for all 1 ≤ b ≤ B, where L(Tb) = Nd(0, Vb). Note that, as usual for resampling mechanisms, the

weak convergence originates from the randomness of the bootstrap procedure given X, whereas

the convergence in probability arises from the sample X. We can now proceed similarly to

the proof of Theorem 3.1. in Pauly et al. (2012). Since the random vectors
√
nb(ϑ̂

∗
b − ϑ̂b) are

also independent within 1 ≤ b ≤ B given the data, the appearing multivariate normal limit

vectors Tb, 1 ≤ b ≤ B, are independent as well. Together with the continuous mapping theorem

this shows that the conditional distribution of
√
NC(ϑ̂∗ − ϑ̂) given X converges weakly to a

multivariate normal distribution with mean zero and covariance matrix CV C> in probability:

ρr

(

L(
√
NC(ϑ̂∗ − ϑ̂)|X),Nr(0, CV C>)

)

p−→ 0.

Furthermore, the weak law of large numbers for triangular arrays implies V̂ ∗
b − V̂b

p−→ 0. Since all

Vb, 1 ≤ b ≤ B, are positive definite, we finally have det(V̂b) > 0 almost surely and therefore also

det(V̂ ∗
b ) > 0 finally almost surely. This, together with the continuous mapping theorem, implies

convergence in probability of the Moore-Penrose inverses, i. e.,

(CV̂ ∗C>)+
p−→ (CV C>)+.

Thus another application of the continuous mapping theorem together with Theorem 9.2.2 in

Rao and Mitra (1971) shows conditional weak convergence of W ∗ given X to L(W |H), the distri-

bution of W under H : Cϑ = ξ, in probability, i.e. ρ1(L(W ∗|X),L(W |H))
p−→ 0. The final result

is then a consequence of Helly Bray’s Theorem and Polya’s Uniform Convergence Theorem, since

the cdf of W is continuous.

Remark 4.

1. Notice that the conditional distribution of W ∗ always approximates the null distribution of

W , even if H does not hold true.

2. In view of applications to multiple test problems involving a vector W = (W1, . . . ,Wm)> as

in Problem 1 (m = p) and Problem 2 (m = pk), our resampling approach can be applied as

follows. The vector W can be written as a continuous function g (say) of Cϑ̂ − ξ and V̂ .

Note that the proof of Theorem 3 shows that C(ϑ̂∗−ϑ̂) always approximates the distribution
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of C(ϑ̂ − ϑ) and V̂ ∗ − V̂ converges to zero in probability. Thus, we can approximate the

distribution of W = g(Cϑ̂−ξ, V̂ ) under H0 by W∗ = g(C(ϑ̂∗− ϑ̂), V̂ ∗). Slutzky’s Theorem,

together with the continuous mapping theorem, ensures that an analogous result to Theorem

3 applies for W∗. This immediately implies that multiple test procedures for weak FWER

control can be calibrated by the conditional distribution of W∗. For strong control of the

FWER and for FDR control, the resampling approach is valid under the so-called subset

pivotality condition (SPC) introduced by Westfall and Young (1993). Validity of the SPC

heavily relies on the structure of the function g. For Problems 1 and 2, the SPC is fulfilled,

because every Wi depends on mutually different coordinates of ϑ̂.

5. CONCLUDING REMARKS AND OUTLOOK

First of all, we would like to mention that the multiple testing results with respect to FWER

control achieved in Sections 2 and 3 also imply (approximate) simultaneous confidence regions

for the parameters of model (1.1) by virtue of the extended correspondence theorem, see Section

4.1 of Finner (1994). In such cases (in which focus is on FWER control), a promising alternative

method for constructing a multiple test procedure is to deduce the limiting joint distribution of

the vector (Q1, . . . , Qm)> (say) of likelihood ratio statistics. For instance, one may follow the

derivations by Katayama (2008) for the case of likelihood ratio statistics stemming from models

with independent and identically distributed observations. Once this limiting joint distribution

is obtained, simultaneous test procedures like the ones developed by Hothorn et al. (2008) are

applicable.

Second, it may be interesting to assess the variance of the FDP in dynamic factor models, too.

Among others, Finner et al. (2007) and Blanchard et al. (2011) have shown that this variance

can be large in models with dependent test statistics and have consequently questioned if it is

appropriate only to control the first moment of the FDP, because this does not imply a type I

error control guarantee for the actual experiment at hand. A maybe more convincing concept in

such cases is given by control of the false discovery exceedance, see Farcomeni (2009) for a good

survey.

A topic relevant for economic applications is a numerical comparison of the asymptotic mul-

tiple tests discussed in Section 2 and the bootstrap-based method derived in Section 4. We will

provide such a comparison in a companion paper. Furthermore, one may ask to which extent the

results in the present paper can be transferred to more complicated models where factor loadings

are modeled as a function of covariates like in Park et al. (2009). To this end, stochastic process

techniques way beyond the scope of our setup are required. A first step may be the consideration

of parametric models in which conditioning on the design matrix will lead to our framework.

Finally, another relevant multiple test problem in DFMs is to test for cross-sectional corre-

lations between specific factors. While the respective test problems can be formalized by linear

contrasts in analogy to Lemmas 3 and 4, they can not straightforwardly be addressed under our

likelihood-based framework, because the computation of the MLE by means of the system of nor-

mal equations discussed in Section 3 heavily relies on the general assumption of cross-sectionally

uncorrelated error terms. Addressing this multiple test problem is therefore devoted to future

research.
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APPENDIX

Table 1: Simulated FWER control of ϕHommel under AR(1) and compound symmetry structure,

respectively. The target FWER level was set to 5% in all simulations.

m ρ m0 F̂WERAR(1),ρ(ϕ
Hommel) F̂WERCS,ρ(ϕ

Hommel)

2 0.1 1 0.052 0.045

2 0.1 2 0.052 0.057

2 0.25 1 0.06 0.064

2 0.25 2 0.049 0.049

2 0.5 1 0.035 0.056

2 0.5 2 0.055 0.043

2 0.75 1 0.056 0.043

2 0.75 2 0.052 0.049

2 0.9 1 0.051 0.048

2 0.9 2 0.054 0.042

5 0.1 1 0.05 0.053

5 0.1 3 0.047 0.046

5 0.1 5 0.042 0.043

5 0.25 1 0.047 0.031

5 0.25 3 0.057 0.055

5 0.25 5 0.057 0.047

5 0.5 1 0.051 0.043

5 0.5 3 0.052 0.038

5 0.5 5 0.05 0.048

5 0.75 1 0.049 0.054

5 0.75 3 0.055 0.04

5 0.75 5 0.049 0.041

5 0.9 1 0.053 0.045

5 0.9 3 0.043 0.045

5 0.9 5 0.044 0.035

10 0.1 1 0.044 0.054

10 0.1 4 0.06 0.049

10 0.1 7 0.047 0.059

10 0.1 10 0.06 0.057

10 0.25 1 0.048 0.046

10 0.25 4 0.061 0.035
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m ρ m0 F̂WERAR(1),ρ(ϕ
Hommel) F̂WERCS,ρ(ϕ

Hommel)

10 0.25 7 0.056 0.045

10 0.25 10 0.057 0.041

10 0.5 1 0.042 0.053

10 0.5 4 0.047 0.059

10 0.5 7 0.049 0.04

10 0.5 10 0.055 0.062

10 0.75 1 0.048 0.056

10 0.75 4 0.051 0.038

10 0.75 7 0.036 0.049

10 0.75 10 0.031 0.044

10 0.9 1 0.049 0.053

10 0.9 4 0.04 0.038

10 0.9 7 0.041 0.036

10 0.9 10 0.036 0.026

50 0.1 1 0.044 0.061

50 0.1 10 0.036 0.055

50 0.1 25 0.051 0.055

50 0.1 40 0.055 0.043

50 0.1 50 0.042 0.041

50 0.25 1 0.048 0.047

50 0.25 10 0.05 0.062

50 0.25 25 0.03 0.052

50 0.25 40 0.04 0.052

50 0.25 50 0.041 0.052

50 0.5 1 0.047 0.05

50 0.5 10 0.046 0.045

50 0.5 25 0.047 0.058

50 0.5 40 0.047 0.046

50 0.5 50 0.052 0.039

50 0.75 1 0.055 0.055

50 0.75 10 0.055 0.028

50 0.75 25 0.041 0.029

50 0.75 40 0.04 0.044

50 0.75 50 0.039 0.029

50 0.9 1 0.05 0.059

50 0.9 10 0.038 0.03

50 0.9 25 0.037 0.017

50 0.9 40 0.044 0.022

50 0.9 50 0.028 0.024
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m ρ m0 F̂WERAR(1),ρ(ϕ
Hommel) F̂WERCS,ρ(ϕ

Hommel)

100 0.1 1 0.056 0.05

100 0.1 10 0.038 0.055

100 0.1 25 0.046 0.056

100 0.1 50 0.06 0.053

100 0.1 75 0.049 0.047

100 0.1 90 0.06 0.051

100 0.1 100 0.057 0.05

100 0.25 1 0.047 0.057

100 0.25 10 0.055 0.047

100 0.25 25 0.054 0.044

100 0.25 50 0.048 0.045

100 0.25 75 0.041 0.051

100 0.25 90 0.044 0.052

100 0.25 100 0.054 0.044

100 0.5 1 0.047 0.046

100 0.5 10 0.053 0.04

100 0.5 25 0.048 0.04

100 0.5 50 0.056 0.052

100 0.5 75 0.043 0.045

100 0.5 90 0.047 0.033

100 0.5 100 0.042 0.049

100 0.75 1 0.046 0.052

100 0.75 10 0.039 0.039

100 0.75 25 0.044 0.034

100 0.75 50 0.046 0.03

100 0.75 75 0.047 0.024

100 0.75 90 0.048 0.026

100 0.75 100 0.043 0.028

100 0.9 1 0.051 0.05

100 0.9 10 0.045 0.038

100 0.9 25 0.033 0.02

100 0.9 50 0.042 0.008

100 0.9 75 0.046 0.017

100 0.9 90 0.04 0.012

100 0.9 100 0.045 0.016
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Table 2: Simulated FWER control of ϕHommel under Toeplitz structure and for unstructured

correlation matrices, respectively. The target FWER level was set to 5% in all simulations.

m m0 F̂WERToeplitz(ϕ
Hommel) F̂WERUN (ϕHommel)

2 1 0.043 0.052

2 2 0.049 0.052

5 1 0.052 0.057

5 3 0.048 0.041

5 5 0.044 0.037

10 1 0.048 0.05

10 4 0.057 0.04

10 7 0.048 0.046

10 10 0.045 0.043

50 1 0.046 0.043

50 10 0.069 0.043

50 25 0.048 0.044

50 40 0.047 0.036

50 50 0.045 0.054

100 1 0.044 0.047

100 10 0.044 0.054

100 25 0.05 0.048

100 50 0.055 0.054

100 75 0.044 0.055

100 90 0.055 0.038

100 100 0.047 0.055
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Table 3: Simulated FDR control of ϕLSU under AR(1) and compound symmetry structure, re-

spectively. The target FDR level was set to α = 5% in all simulations.

m ρ m0 m0α/m F̂DRAR(1),ρ(ϕ
LSU) F̂DRCS,ρ(ϕ

LSU)

2 0.1 1 0.025 0.026 0.0225

2 0.1 2 0.05 0.052 0.057

2 0.25 1 0.025 0.03 0.032

2 0.25 2 0.05 0.049 0.049

2 0.5 1 0.025 0.0175 0.028

2 0.5 2 0.05 0.055 0.043

2 0.75 1 0.025 0.028 0.0215

2 0.75 2 0.05 0.052 0.049

2 0.9 1 0.025 0.026 0.024

2 0.9 2 0.05 0.054 0.042

5 0.1 1 0.01 0.01 0.0106

5 0.1 3 0.03 0.028 0.0275

5 0.1 5 0.05 0.043 0.043

5 0.25 1 0.01 0.0094 0.0062

5 0.25 3 0.03 0.033 0.030

5 0.25 5 0.05 0.058 0.05

5 0.5 1 0.01 0.0102 0.0086

5 0.5 3 0.03 0.0308 0.025

5 0.5 5 0.05 0.051 0.049

5 0.75 1 0.01 0.0098 0.0108

5 0.75 3 0.03 0.034 0.030

5 0.75 5 0.05 0.052 0.041

5 0.9 1 0.01 0.0106 0.009

5 0.9 3 0.03 0.0302 0.026

5 0.9 5 0.05 0.048 0.038

10 0.1 1 0.005 0.0044 0.0054

10 0.1 4 0.02 0.0201 0.023

10 0.1 7 0.035 0.032 0.037

10 0.1 10 0.05 0.061 0.058

10 0.25 1 0.005 0.0048 0.0046

10 0.25 4 0.02 0.0201 0.020

10 0.25 7 0.035 0.0375 0.0336

10 0.25 10 0.05 0.057 0.043

10 0.5 1 0.005 0.0042 0.0053

10 0.5 4 0.02 0.022 0.022

10 0.5 7 0.035 0.033 0.029

10 0.5 10 0.05 0.055 0.068
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m ρ m0 m0α/m F̂DRAR(1),ρ(ϕ
LSU) F̂DRCS,ρ(ϕ

LSU)

10 0.75 1 0.005 0.0048 0.0056

10 0.75 4 0.02 0.021 0.019

10 0.75 7 0.035 0.032 0.038

10 0.75 10 0.05 0.034 0.045

10 0.9 1 0.005 0.0049 0.0053

10 0.9 4 0.02 0.017 0.017

10 0.9 7 0.035 0.035 0.033

10 0.9 10 0.05 0.037 0.03

50 0.1 1 0.001 0.00088 0.00122

50 0.1 10 0.01 0.0093 0.010

50 0.1 25 0.025 0.025 0.025

50 0.1 40 0.04 0.043 0.041

50 0.1 50 0.05 0.042 0.042

50 0.25 1 0.001 0.00096 0.00094

50 0.25 10 0.01 0.0094 0.0099

50 0.25 25 0.025 0.023 0.025

50 0.25 40 0.04 0.037 0.040

50 0.25 50 0.05 0.042 0.053

50 0.5 1 0.001 0.00094 0.001

50 0.5 10 0.01 0.0101 0.010

50 0.5 25 0.025 0.024 0.024

50 0.5 40 0.04 0.042 0.037

50 0.5 50 0.05 0.054 0.04

50 0.75 1 0.001 0.0011 0.0011

50 0.75 10 0.01 0.011 0.0096

50 0.75 25 0.025 0.026 0.021

50 0.75 40 0.04 0.040 0.040

50 0.75 50 0.05 0.04 0.034

50 0.9 1 0.001 0.001 0.0012

50 0.9 10 0.01 0.0097 0.0086

50 0.9 25 0.025 0.024 0.020

50 0.9 40 0.04 0.040 0.039

50 0.9 50 0.05 0.034 0.032

100 0.1 1 0.0005 0.00056 0.00050

100 0.1 10 0.005 0.0045 0.0049

100 0.1 25 0.0125 0.012 0.012

100 0.1 50 0.025 0.026 0.025

100 0.1 75 0.0375 0.037 0.035

100 0.1 90 0.045 0.044 0.046
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m ρ m0 m0α/m F̂DRAR(1),ρ(ϕ
LSU) F̂DRCS,ρ(ϕ

LSU)

100 0.1 100 0.05 0.058 0.05

100 0.25 1 0.0005 0.00047 0.00057

100 0.25 10 0.005 0.0049 0.0051

100 0.25 25 0.0125 0.013 0.013

100 0.25 50 0.025 0.025 0.026

100 0.25 75 0.0375 0.036 0.038

100 0.25 90 0.045 0.044 0.044

100 0.25 100 0.05 0.055 0.047

100 0.5 1 0.0005 0.00047 0.00046

100 0.5 10 0.005 0.0051 0.0044

100 0.5 25 0.0125 0.013 0.013

100 0.5 50 0.025 0.025 0.027

100 0.5 75 0.0375 0.036 0.038

100 0.5 90 0.045 0.045 0.038

100 0.5 100 0.05 0.045 0.054

100 0.75 1 0.0005 0.00046 0.00052

100 0.75 10 0.005 0.0047 0.0046

100 0.75 25 0.0125 0.012 0.012

100 0.75 50 0.025 0.024 0.023

100 0.75 75 0.0375 0.039 0.034

100 0.75 90 0.045 0.044 0.035

100 0.75 100 0.05 0.044 0.035

100 0.9 1 0.0005 0.00051 0.00050

100 0.9 10 0.005 0.0050 0.0050

100 0.9 25 0.0125 0.012 0.012

100 0.9 50 0.025 0.026 0.020

100 0.9 75 0.0375 0.039 0.033

100 0.9 90 0.045 0.042 0.032

100 0.9 100 0.05 0.048 0.022
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Table 4: Simulated FDR control of ϕLSU under Toeplitz structure and for unstructured correlation

matrices, respectively. The target FDR level was set to α = 5% in all simulations.

m m0 m0α/m F̂DRToeplitz(ϕ
LSU) F̂DRUN (ϕLSU)

2 1 0.025 0.0215 0.026

2 2 0.05 0.049 0.052

5 1 0.01 0.0104 0.011

5 3 0.03 0.034 0.033

5 5 0.05 0.045 0.037

10 1 0.005 0.0048 0.005

10 4 0.02 0.022 0.019

10 7 0.035 0.035 0.033

10 10 0.05 0.046 0.045

50 1 0.001 0.00092 0.00086

50 10 0.01 0.011 0.0096

50 25 0.025 0.025 0.023

50 40 0.04 0.037 0.038

50 50 0.05 0.047 0.057

100 1 0.0005 0.00044 0.00047

100 10 0.005 0.0047 0.0053

100 25 0.0125 0.012 0.012

100 50 0.025 0.025 0.026

100 75 0.0375 0.034 0.037

100 90 0.045 0.044 0.044

100 100 0.05 0.049 0.057
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