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privacy, ...
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Issues we will not have time to cover: Privacy

We own a data set Xr , r ∈ A.

An agent wants to estimate the mean and/or the median of
the data.

Can we release the data to the agent in a useful form while
satisfying certain privacy requirements?

Example: not reveal clearly if a particular person is in set A.
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The goal: study the effect of a new treatment.

Some individuals are given the treatment, some placebo.

Random assignment mechanism: n individuals, Di = 1 or 0,
if ith individual is given the treatment or placebo.

Covariates X1, . . . ,Xn; e(x) = P(Di = 1|Xi = x).
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Yi response of interest.

Need to estimate: µtreat = E (Yi |treatment).

The IPW estimator:

µ̂treat =
1

n

n∑
i=1

Di

e(Xi )
Yi .

Extremes appear if e(Xi ) can be close to 0.
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Regular variation

Random variable X : regularly varying right tail, exponent α > 0 if

lim
x→∞

P(X > tx)

P(X > x)
= t−α, any t > 0.

X has balanced regularly varying tail, exponent α > 0 if

1 |X | has regularly varying right tail, exponent α > 0,

2 tail balance:

lim
x→∞

P(X > x)

P(|X | > x)
exists.
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Random vector X = (X1, . . . ,Xd) has regularly varying tails,
exponent α > 0 if

1 ‖X‖ has regularly varying right tail, exponent α > 0,

2 stabilization of the directional distribution: as x →∞,

P
(
X/‖X‖ ∈ ·

∣∣‖X‖ > x
)
⇒ Γ(·) weakly on Sd−1.

Γ: the spectral measure of X.
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The spectral measure Γ describes the likely directions of the
extremes.

Two of most important tasks of extreme value analysis:

estimation of the tail exponent and the spectral measure
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but several of largest values were removed.

Can we still estimate the right tail of the observations?

Examples: malicious actions, human lifetimes, ...
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X1,X2, . . . ,Xn: i.i.d., regularly varying right tail.

A common estimator of the tail exponent α: Hill estimator.

Order the observations: X(1) ≥ X(2) ≥ · · · ≥ X(n).

Choose 1 ≤ k < n and construct an estimator

Hn(k) =
1

k

k∑
i=1

logX(i) − logX(k+1).
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If k = kn →∞, kn/n→ 0, then

Hn(kn)→ 1/α in probability.

Asymptotic normality of the Hill estimator also holds under
second order regular variation.

F : the cdf of the observations, F←: the generalized inverse.

Quantile function: U(t) = F←(1− 1/t), t > 1;
it is regularly varying with exponent 1/α.
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Second-order regular variation

Assume that:

There is ρ ≤ 0 and A : (0,∞)→ R such that

lim
t→∞

logU(tx)− logU(t)− α−1 log x

A(t)
=

xρ − 1

ρ
, all x ≥ 1.

In Hill estimator: √
knA(n/kn)→ λ ∈ R.
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Under 2nd order regular variation:√
kn
(
Hn(kn)− 1/α

)
⇒ N(

(
λ/(1− ρ), 1/α2

)
.

Hill estimator is asymptotically normal, with asymptotic bias.

Suppose now that several upper order statistics are missing.

Unaware of that we construct Hill estimator.

What does Hill estimator show?
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Suppose [δkn] upper order statistics are missing;
δ = 0 a possibility.

Can we still estimate α and unknown δ?

Assume second-order regular variation condtions hold.

We evaluate Hill estimator at θkn remaining upper order
statistics.
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Original observations: X1, . . . ,Xn.

Order statistics: X(1) ≥ X(2) ≥ · · · ≥ X(n).

Observed order statistics: X([δkn]+1) ≥ X([δkn]+2) ≥ · · · ≥ X(n).

The Hill Estimator Without Extremes (HEWE) process:

Hn(kn; θ) =
1

bθknc

bθknc∑
i=1

logX(bδknc+i) − logX(bδknc+bθknc+1)

= 0 if θ < 1/kn.
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Under second-order regular variation,

(√
kn

(
Hn(kn; θ)− α−1gδ(θ)

)
− λbδ,ρ(θ), θ > 0

)
⇒ α−1Gδ(·)

weakly in D(0,∞).

gδ(θ) =

{
1, δ = 0,

1− (δ/θ) log
(
(θ/δ) + 1

)
, δ > 0,
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bδ,ρ(θ) =

{
1

1−ρ
1
θρ , δ = 0,

1+(θ/δ)ρ−(θ/δ+1)ρ

(θ/δ)(1−ρ)ρ
1

(δ+θ)ρ , δ > 0,

Gδ(θ) =
1

θ

∫ δ+θ

δ
(1− δ/x)dW (x), θ > 0 .

W the standard Brownian motion.
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For θi > 0, i = 1, . . . ,m:(
Hn(kn; θi ), i = 1, . . . ,m

)
asymptotically normal.

Means and covariances depend on α, δ, ρ, λ.

α, δ: parameters of interest; ρ, λ: nuisance parameters.

We use Gaussian MLE assuming λ = 0. This eliminates
dependens on ρ as well.
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If X1, . . . ,Xn are i.i.d. Pareto, we can take
θi = ε+ i/kn, i = 1, . . . , kn, ε > 0.

The Gaussian MLE estimator is again consistent and
asymptotically normal.

Numerically, the estimator performs well even if X1, . . . ,Xn
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Pareto and standard Fréchet distributions.

α = 1 in all cases.
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We remove 20, 40 and 100 extremes; δ = 0.1, 0.2, 0.5.
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Table: Pareto distribution, n = 5000, kn = 200

δ̂a γ̂a ρδ̂a,γ̂a
δ0 mean (sd) mean (sd) corr (asy)

0.1 0.113 (0.057) 1.015 (0.143) 0.858 (0.829)
0.2 0.222 (0.104) 1.025 (0.187) 0.915 (0.894)
0.5 0.547 (0.285) 1.040 (0.309) 0.965 (0.956)

δ̂b γ̂b ρδ̂b,γ̂b
δ0 mean (sd) mean (sd) corr (asy)

0.1 0.104 (0.049) 1.006 (0.129) 0.841 (0.796)
0.2 0.207 (0.096) 1.010 (0.177) 0.915 (0.878)
0.5 0.515 (0.254) 1.014 (0.282) 0.962 (0.951)



Table: Fréchet distribution, n = 5000, kn = 200

δ̂a γ̂a ρδ̂a,γ̂a
δ0 mean (sd) mean (sd) corr (asy)

0.1 0.106 (0.050) 0.992 (0.130) 0.829 (0.829)
0.2 0.208 (0.094) 0.993 (0.176) 0.906 (0.894)
0.5 0.535 (0.287) 1.011 (0.300) 0.961 (0.956)

δ̂b γ̂b ρδ̂b,γ̂b
δ0 mean (sd) mean (sd) corr (asy)

0.1 0.101 (0.045) 0.988 (0.122) 0.826 (0.796)
0.2 0.196 (0.085) 0.981 (0.165) 0.904 (0.878)
0.5 0.502 (0.252) 0.985 (0.274) 0.961 (0.951)



Missing extremes may not be consecutive, from the largest.

We can still estimate number of the missing extremes.

Example 10 out of the top 50 extremes are missing.

Remove artificially 40 top extremes and estimate now number
of the missing extremes.

Top 50 extremes now missing, estimate should be around 50.

Conclude that around 10 extremes were originally missing.
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In general: suppose that δ0kn extremes are missing
among the top (δ0 + δ1)kn extremes.

Remove artificially i top remaining extremes, i = 1, 2, . . ..

Estimate δ (from δkn missing top extremes).

If initially only the top δ0kn extremes were missing (δ1 = 0),
the plot would be close to linear.
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the plot close to linear once δ1kn extremes are removed.

This can be used to estimate number of original missing
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There is very high correlation in estimators of α and δ.

This makes it difficult to detect linearity after repeated
estimation.

It is better to fix α and estimate only δ.

This works reasonably well even when the fixed α is not quite
correct.
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Numerical experiments

n = 5000 observations from standard Pareto and Fréchet,
α = 1, kn = 200.

3 setups:

1 No missing observations; δ0 = 0.

2 Consecutive top missing observations, δ0 = 0.25.

3 δ0 = 0.25, the missing δ0kn = 50 missing extremes are
uniformly chosen among top 100 extremes.
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α = 1, kn = 200.

3 setups:

1 No missing observations; δ0 = 0.

2 Consecutive top missing observations, δ0 = 0.25.

3 δ0 = 0.25, the missing δ0kn = 50 missing extremes are
uniformly chosen among top 100 extremes.



Numerical experiments

n = 5000 observations from standard Pareto and Fréchet,
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Support of the spectral measure and clustering

X random vector with regularly varying tails.

Distribution of the direction of the extremes: spectral
measure:

P
(
X/‖X‖ ∈ ·

∣∣‖X‖ > x
)
⇒ Γ(·) weakly on Sd−1.

Learning the spectral measure is crucial.
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A generic procedure for estimating spectral measure

Observations X(1), . . . ,X(n).

Select threshold x and declare any X(i) with ‖X(i)‖ > x as
extreme.

Random set In ⊂ {1, . . . , n} of extremes; card(In) = Nn.

Use X(i)/‖X(i)‖, i ∈ In, for estimating spectral measure.
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Parametric models of the spectral measure are restrictive.

Estimating a measure nonparametrically is hard.

It is very hard to do in high dimensions.

Only a small part of the sample can be used (Nn out of n
observations).

Normalized extremes do not have the exact spectral measure
as their law.
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If the extremes are high-dimensional, the only hope is sparsity.

If the spectral measure lives on low-dimensional parts of Sd−1,
and we could identify these low-dimensional parts,
estimation would be easier.

A related issue: clustering.
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If we could identify cluster centers, we would only need to
estimate the scatter within each cluster.

This would make estimation of the spectral measure easier.

How do we find lower-dimensional support and clustering in
the spectral measure?
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Clustering of extremes

A 2-dim example with 10 clusters:

Avella Medina, Davis and Samorodnitsky

for all x > 0, where ⇒ denotes weak convergence on Sd−1. In other words, the law of the
angular component X/‖X‖ stabilizes as the radial component becomes large, and the radial
component is regularly varying (equation (2)) with index α. The limit probability measure
Γ is called the angular measure (or spectral measure) and describes how likely the extremal
observations are to point in different directions. In other words, the angular measure de-
scribes the limiting extremal angle for high threshold exceedances that correspond to large
‖X‖. The support of this measure is particularly important since it shows which directions
of the extremes are feasible and which are not feasible. Throughout the rest of paper we
will take ‖ · ‖ to be the Euclidean norm.

For example, if X has a spherically symmetric distribution and the radius ‖X‖ has a
Pareto distribution with index α, then X is regularly varying with angular measure that
is uniform on Sd−1. In this case, the random vector is equally likely to have extremes in
any direction so we do not expect extremes to be clustered. On the other hand, consider
observations generated from a univariate MA(3) process given by Yt = Zt+.5Zt−1−.6Zt−2+
1.5Zt−3, where {Zt} is an iid sequence of symmetric stable random variables with index
α = 1.8. The bivariate vector Xt = (Yt, Yt−1)> is regularly varying and the scatter plot
of Yt vs Yt−1 is displayed in the left panel of Figure 1. Notice that for large values of
‖Xt‖, the points align themselves on rays. In the right panel is a plot of Xt/‖Xt‖ for those
values of ‖Xt‖ that exceed the 99.8% empirical quantile of the radii and are grouped in
10 clusters. In this particular case, the spectral distribution consists of 10 point masses (5
pairs of symmetric point masses, indicated by arrows emanating from the origin).
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Figure 1: Scatter plot of (Yt, Yt−1) for an MA(3) process (left); spectral measure on S1
(right)

This simple example illustrates the challenge in finding meaningful low dimensional
regions supporting the extremes. In a series of papers (see Meyer and Wintenberger (2021),
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The most natural procedure to identify clusters:

1 Choose the extreme observations

2 Project the extremes onto the unit sphere

3 Apply a clustering k-means procedure on the sphere

4 The procedure chooses cluster centers to minimize certain
average “dissimilarity” .

This was investigated in Janssen and Wan (2020).
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Spectral clustering analysis
(Avella, Davis and S. (2924))

Two main stages:

1 Construct a graph with scaled extremes as verteces;

connected components of the graph should correspond to
clusters of extremal directions.

2 Connected components of the graph can be detected using
spectrum of the graph Laplacian.
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identifies extremal clusters in a particular model.

Numerical experiments indicate good results in a wide variety
of situations.
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For the linear factor model the spectral measure is discrete.

The atoms: nonzero columns of A normalized to norm 1.

An atom corresponds to a very large component of Z.

An extremal cluster corresponds to a large component of Z.

Spectral clustering is proven to work asymptotically when
d = 2 if k = kn > G log n, for large G > 0.
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4-dim data, 2 clusters,
α = 1, n = 125000,Nn = 400, kn = 15, σ ∈ {0, 1}

Spectral learning of multivariate extremes
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Figure 4: The heat maps show the estimated cluster centers based on the cluster assign-
ments displayed in Figure 5. The extremal sample corresponds to four dimen-
sional extremes generated from LFM given by (41) with loading matrix (45) and
σ = 0 and σ = 1 respectively. In both cases we took n = 125000, Nn = 400 and
kn = 15.
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(b) Noisy LFM

Figure 5: Cluster assignments output of spectral clustering applied to data generated from
(41) with n = 125000, Nn = 400 and σ = {0, 1}. In both cases spectral clustering
used an extremal 15-NN graph.

A small simulation study was conducted for this LFM model with and without noise.
Based on the screeplots, we used 2 clusters in the noiseless case and 3 clusters in the case
with noise. The two normalized columns of the A were estimated and the boxplot of the
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potentially large number of these low-dimensional sets;
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One can search for “subspaces”:

for a small subset I ⊂ {1, . . . , d},{
s = (s1, . . . , sd) ∈ Sd−1 : si = 0 for all i /∈ I

}
PCA: a natural idea to detect “linear” low-dimensional
support.

Finite variance needed; this can be arranged.
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Lower-dimensional support of the spectral measure may be
“nonlinear”.

Avella, Davis and S. (2024a): propose a different PCA
approach that allows search for “nonlinear” sets.
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The idea of kernel PCA

View the unit sphere Sd−1 ⊂ Rd .

(G (x), x ∈ Rd): zero mean continuous Gaussian field,
covariance function R(·, ·).

An inner product space H0: all finite linear combinations of
continuous functions φ(x) = R(x, ·), x ∈ Rd ,(

φ(x1), φ(x2)
)

= R(x1, x2).
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Reproducing kernel Hilbert space (RKHS) H: completion of
H0.

w1, . . . ,wNn : projections of the extremes in the sample
X1, . . . ,Xn onto Sd−1.

Map w1, . . . ,wNn into H by wi 7→ φ(wi ) (the feature map).

Functions φ(w1), . . . , φ(wNn) define nonnegative definite
covariance kernel Cn : H → H

Cn(f ) =
1

Nn

Nn∑
i=1

f (wi )φ(wi ).
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Perform PCA in H.

The eigenvalues of Cn coincide with the eigenvalues of
N−1n R(wi ,wj), i , j = 1, . . . ,Nn.

Take m < Nn largest eigenvalues.

Pmφ(wi ): the projection of φ(wi ) onto the subspace of H
spanned by the m eigenfunctions of Cn corresponding to the
largest eigenvalues.
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Map each Pmφ(wi ) onto the unit sphere Sd−1

by solving

T (wi ) = argminv∈Sd−1

∥∥φ(v)− Pmφ(wi )
∥∥.

If many of the points w1, . . . ,wNn lie near a small subset
S0 ⊂ Sd−1,

then most of the points T (w1), . . . ,T (wNn) lie near
S0 ⊂ Sd−1.
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We justify the procedure using a version of the Davis-Kahan
theorem on eigenvectors of perturbed matrices.

Our argument is designed for the linear factor model X = AZ:

A: d × p matrix with nonnegative entries;

Z: p-dimensional with i.i.d. nonnegative random variables
with asymptotically power tails.
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The small set: the atoms of the spectral measure.

a(1), . . . , a(p): columns of A;
the atoms are a(i)/‖a(i)‖, i = 1, . . . , p.

Suppose that the directions of extremes are exactly
a(i)/‖a(i)‖, i = 1, . . . , p,

and the directions are well separated.
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Suppose the Gaussian filed is stationary.

The optimization problem:

This is a linear combination of the terms
R
(
v − a(i)/‖a(i)‖

)
, i = 1, . . . , p;

the max is achieved close to one of the points
a(i)/‖a(i)‖, i = 1, . . . , p.
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The directions of extremes are “contaminated” due to only
approximately correct distribution

If the contamination is modest: the covariance kernel changes
moderately.

The Davis-Kahan theorem guarantees that eigenvectors
change modestly.

The kernel PCA procedure still clarifies the picture.
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The procedure seems to work well for many other models.

The “small sets” no longer discrete.

Choice of the covariance function R does not seem to matter.

We use R(x1, x2) = exp
{
−‖x1 − x2‖2

}
.

We use the screeplot of the covariance matrix to choose the
number m of largest eigenvalues.

In most examples this identifies m correctly.
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Once again we allow the contaminated linear factor model

Xi = AZi + σεi , i = 1, . . . , n

(Zi ): i.i.d. 2-dim, i.i.d. Pareto(1) components;

A =


0.1 0.9
0.2 0.8
0.3 0.7
0.4 0.6



σ > 0, (εi ): i.i.d., 4-dim, ε
d
= YG,

G 4-dim N(0, I ), independent of Pareto (1) Y .
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The spectral measure has a discrete component and a uniform
component.

We use n = 10, 000, Nn ≈ 200.

Roughly 50% of the extremes come from the noise.
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(g) Contaminated linear fac-
tor model data
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The spectral measure has a discrete component and a uniform
component.

We use n = 10, 000, Nn ≈ 200.

Roughly 50% of the extremes come from the noise.
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(i) Contaminated linear fac-
tor model data
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The spectral measure has a discrete component and a uniform
component.

We use n = 10, 000, Nn ≈ 200.

Roughly 50% of the extremes come from the noise.
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(k) Contaminated linear fac-
tor model data
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The spectral measure has a discrete component and a uniform
component.

We use n = 10, 000, Nn ≈ 200.

Roughly 50% of the extremes come from the noise.
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(m) Contaminated linear fac-
tor model data

var 1

0.
46

0.
48

0.
50

0.
52

0.35 0.45 0.55

0.
45

0.
50

0.
55

0.
60

0.46 0.48 0.50 0.52

var 2

var 3

0.48 0.50 0.52 0.54

0.45 0.50 0.55 0.60

0.
35

0.
45

0.
55

0.
48

0.
50

0.
52

0.
54

var 4

(n) Preimages



Spiked Gaussian model

The model:

Xi = uiNi + σεi , i = 1, . . . , n,

(ui ) i.i.d. Fréchet(1); (Ni ) i.i.d. d-dim centered normal,
covariance matrix

Σ =

p∑
k=1

λkvkv
>
k + σ20Id ,

λ1 ≥ λ2 ≥ · · · ≥ λp > 0, v1, . . . , vp orthonormal.

(σεi ): contamination noise, as before.
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(Ni ) i.i.d. d-dim centered normal,
covariance matrix

Σ =

p∑
k=1

λkvkv
>
k + σ20Id ,

λ1 ≥ λ2 ≥ · · · ≥ λp > 0, v1, . . . , vp orthonormal.

(σεi ): contamination noise, as before.



Spiked Gaussian model

The model:

Xi = uiNi + σεi , i = 1, . . . , n,
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We choose d = 4, p = 2, σ = 1.

Small set spanned by v1, v2.
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(o) Spiked Gaussian model data
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We choose d = 4, p = 2, σ = 1. Small set spanned by v1, v2.
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(q) Spiked Gaussian model data
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We choose d = 4, p = 2, σ = 1. Small set spanned by v1, v2.

var 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

var 2

var 3

−1.0 −0.5 0.0 0.5 1.0

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

var 4

(s) Spiked Gaussian model data

var 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

var 2

var 3

−1.0 −0.5 0.0 0.5 1.0

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

var 4

(t) Preimages


