Mean geometry of 2D random fields

Hermine Biermé, IDP, Université de Tours

September 23rd - 24th, 2024, German-Japanese Fall school, Ulm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Joint works

Agnès Desolneux (CNRS, Centre Borelli, ENS Paris-Saclay)

Elena Di Bernardino (LJAD, Nice University)

📙 Céline Duval (LPSM, Sorbonne University)

Anne Estrade (MAP5, Paris Cité University)

Outlines

1 Introduction to random fields

- 2 Geometry of excursion sets
- 3 Case of elementary functions and shot noise fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 4 Case of smooth functions and random fields
- 5 Isotropic smooth random fields
- 6 Anisotropic Gaussian smooth random fields

Lecture 1 :

1 Introduction to random fields

- Definitions and law/stationarity and isotropy
- 2 Smooth Gaussian fields and related
- 3 Shot noise random fields
- 2 Geometry of excursion sets
 - 1 Curvature measures
 - 2 Lipschitz-Killing curvatures and densities
- 3 Case of elementary functions and shot noise fields
 - 1 General results
 - 2 Weak formulas for elementary shot noise fields
 - 3 LK densities for elementary shot noise fields

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a complete probability space and $d \geq 2$

Definition

A (real) random field indexed by \mathbb{R}^d is just a collection of real random variables $X(x) : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ measurable, $\forall x \in \mathbb{R}^d$.

Exple : d = 2, $X(x)(\omega) =$ grey level of a picture at point x. In practice data are only available on pixels $S = \{0, 1, ..., n-1\}^2 \subset \mathbb{R}^2$ for an image of size $n \times n$.

Definition

The distribution of $(X(x))_{x \in \mathbb{R}^d}$ is given by all its finite dimensional distribution (fdd) ie the distribution of all real random vectors

 $(X(x_1)\ldots,X(x_k))$ for $k \geq 1, x_1,\ldots,x_k \in \mathbb{R}^d$.

Joint distributions are often difficult to compute !

Definition

 $(X(x))_{x\in T}$ is a second order field if $\mathbb{E}(X(x)^2) < +\infty$ for all $x \in \mathbb{R}^d$.

- Mean function $m_X : x \in \mathbb{R}^d \to \mathbb{E}(X(x)) \in \mathbb{R}$
- Covariance function $K_X : (x, y) \in \mathbb{R}^d \times \mathbb{R}^d \to Cov(X(x), X(y)) \in \mathbb{R}.$

When $m_X = 0$, the field X is centered. Otherwize $Y = X - m_X$ is centered and $K_Y = K_X$.

Proposition

- A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a covariance function iff
 - **1** K is symmetric
 - **2** K is positive definite : $\forall k \geq 1, x_1, \dots, x_k \in \mathbb{R}^d, \lambda_1, \dots, \lambda_k \in \mathbb{R}$,

$$\sum_{i,j=1}^k \lambda_i \lambda_j K(x_i, x_j) \ge 0.$$

Gaussian fields

Definition

$$(X(x))_{x \in \mathbb{R}^d}$$
 is a Gaussian field if $\forall k \ge 1, x_1, \dots, x_k \in \mathbb{R}^d$

 $(X(x_1),\ldots,X(x_k))$ is a Gaussian vector of \mathbb{R}^k ,

 $EQ \ \forall \lambda_1, \ldots, \lambda_k \in \mathbb{R}$, the real random variable $\sum_{i=1}^k \lambda_i X(x_i)$ is a Gaussian variable.

Proposition

When $(X(x))_{x \in \mathbb{R}^d}$ is Gaussian, $(X(x))_{x \in \mathbb{R}^d}$ is a second order field and its law is determined by its mean function $m_X : x \mapsto \mathbb{E}(X(x))$ and its covariance function $K_X : (x, y) \mapsto Cov(X(x), X(y))$.

Theorem (Komogorov)

Let $m : \mathbb{R}^d \to \mathbb{R}$ and $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, symmetric and positive definite, then there exists a Gaussian field with mean m and covariance K.

Stationarity

Definition

 $X = (X(x))_{x \in \mathbb{R}^d}$ (strongly) stationary if, $\forall x_0 \in \mathbb{R}^d$, $(X(x + x_0))_{x \in \mathbb{R}^d}$ has the same law than X.

Proposition

If $X = (X(x))_{x \in \mathbb{R}^d}$ is stationary and second order, $\forall x_0 \in \mathbb{R}^d$,

$$\mathbf{m}_X(x)=m_X$$

•
$$K_X(x,y) = \rho_X(x-y)$$
 with $\rho_X : \mathbb{R}^d \to \mathbb{R}$ even s.t.

1
$$\rho_X(0) \ge 0$$

2 $|\rho_X(x)| \le \rho_X(0) \ \forall x \in \mathbb{R}^d$
3 ρ_X is of positive type ie
 $\forall k \ge 1, x_1, \dots, x_k \in \mathbb{R}^d, \lambda_1, \dots, \lambda_k \in \mathbb{R},$

$$\sum_{k=1}^k \lambda_i \lambda_j \rho_X(x_i - x_j) \ge 0.$$

i, j=1

Stationarity

Theorem (Bochner 1932)

An even continuous function $\rho : \mathbb{R}^d \to \mathbb{R}$ is of positive type if and only if $\rho(0) > 0$ and there exists a symmetric probability measure μ on \mathbb{R}^d such that

$$\rho(\mathbf{x}) = \rho(\mathbf{0}) \int_{\mathbb{R}^d} e^{i\xi \cdot \mathbf{x}} d\mu(\xi).$$

In other words there exists a symmetric random vector Z on \mathbb{R}^d such that

$$\rho(\mathbf{x}) = \rho(\mathbf{0}) \mathbb{E}(e^{i\mathbf{x} \cdot \mathbf{Z}}).$$

Rk : When ρ is the covariance of the stationary field X, μ is called the spectral measure of X.

Definition

The field is standard if it is centered (m = 0) and unit variance $(\rho(0) = 1)$.

Isotropy

Definition

 $X = (X(x))_{x \in \mathbb{R}^d}$ isotropic if, $\forall Q$ rotation, $(X(Qx))_{x \in \mathbb{R}^d}$ has the same law than X.

Rk : A stationary Gaussian random field is isotropic iff $\forall Q$, $\rho(Qx) = \rho(x)$ **Exple** : $d = 2 \ \rho(x) = \exp(-\frac{\gamma_1}{2}x_1^2) \exp(-\frac{\gamma_2}{2}x_2^2)$ for $x = (x_1, x_2) \in \mathbb{R}^2$ and $\gamma_1, \gamma_2 \in (0, +\infty)$: X isotropic iff $\gamma_1 = \gamma_2$

Smooth Gaussian stationary random fields

Let $\rho : \mathbb{R}^d \to \mathbb{R}$ be an even $C^{2k+\varepsilon}$ function (for instance) of positive type. Then one can find $(\Omega, \mathcal{A}, \mathbb{P})$ a complete probability space and $X : \Omega \times \mathbb{R}^d \to \mathbb{R}$

such that X is a centered Gaussian stationary C^k random field :

•
$$\forall \omega \in \Omega, x \in \mathbb{R}^d \mapsto X(\omega, x) \in \mathbb{R}$$
 is C^k ;

• $\left(\partial_{j}^{|j|}X\right)_{|j|\leq k}$ jointly Gaussian stationary with $\operatorname{Cov}\left(\partial_{j}^{|j|}X(x),\partial_{j'}^{|j'|}X(0)\right) = (-1)^{|j'|}\partial_{j+j'}^{|j|+|j'|}\rho(x).$

In particular $\Gamma_{\nabla X} := (-\partial_{ij}\rho(0))_{1 \le i,j \le d} = -D^2\rho(0)$ is the covariance of the centered Gaussian vector $\nabla X(x) = (\partial_1 X(x), \dots, \partial_d X(x))$. When X is also isotropic $\Gamma_{\nabla X} = \gamma_2 I_2$ with γ_2 the second spectral moment **Rk** : Any stationary C^1 Gaussian random field Y may be written as

$$Y = m + \sigma X \circ Q,$$

with X standard with $\rho_X = \frac{1}{\sigma^2} \rho_Y$ and $\Gamma_{\nabla X} = \frac{1}{\sigma^2} Q \Gamma_{\nabla Y \Box} Q^T$.

Smooth Gaussian type random fields

A random field X is of **Gaussian type** if $X = F(G) : F : \mathbb{R}^{\ell} \to \mathbb{R}$ and $G = (G_1, \ldots, G_{\ell})$ is a family of *i.i.d.* Gaussian standard stationary random fields

Examples

- $\chi^2(k)$ random field : $F: x \in \mathbb{R}^k \to ||x||^2$
- Student(k) : $x = (z, y) \in \mathbb{R} \times \mathbb{R}^k \mapsto F(x) := z/\sqrt{\|y\|^2/k}$

A (Poisson) shot noise random field is a random function $X : \mathbb{R}^d \to \mathbb{R}$ given by

$$orall x \in \mathbb{R}^d, \;\; X(x) = \sum_{i \in I} g_{m_i}(x-x_i), \; ext{where}$$

- $\{x_i\}_{i \in I}$ is a Poisson point process of intensity $\lambda > 0$ in \mathbb{R}^d ,
- {m_i}_{i∈1} are independent « marks » with distribution F(dm) on ℝ^ℓ, and independent of {x_i}_{i∈1}.
- The functions g_m are real-valued deterministic functions, called spot functions, such that

$$\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}|g_m(y)|\,dy\,F(dm)<+\infty.$$

Here we mainly consider, for sake of simplicity, $\ell = 1$ with a single $L^1(\mathbb{R}^d)$ function g randomly weighted or dilated : $M \sim F$ is a probability measure on \mathbb{R} or $(0, +\infty)$ and

$$g_m(y) = mg(y)$$
 or $g_m(y) = g(y/m)$.

It is therefore a stationary and integrable field with

$$\mathbb{E}(X(x)) = \lambda \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} g_m(y) \, dy \, F(dm).$$

The characteristic function of X(x) is given by

$$\mathbb{E}\left(e^{itX(x)}\right) = \exp\left(\lambda \int_{\mathbb{R}^{\ell} \times \mathbb{R}^{d}} [e^{i[tg_m(y)]} - 1]F(dm)dy\right).$$

When g is smooth and $|\mathsf{j}| \leq k+1$

$$\int_{\mathbb{R}^{\ell}}\int_{\mathbb{R}^{d}}|\partial_{j}^{|j|}g_{m}(y)|\,dy\,F(dm)<+\infty$$

X is C^k and we have also access to joint law of $(\partial_j X(x))_{x \in \mathbb{R}^d, |j| \le k}$ via characteristic function. In particular the joint characteristic function of X(x) and $\partial_j X(x)$ is

$$\varphi(t,s) = \mathbb{E}\left(e^{itX(x)+is\partial_j X(x)}\right)$$
$$= \exp\left(\lambda \iint [e^{itg_m(y)+is\partial_j g_m(y)} -1] F(dm) dy\right) \in \mathbb{R} \quad \text{for } x \in \mathbb{R}$$

Statistical properties of shot noise random fields

If ∫_{ℝ^ℓ} ∫_{ℝ^d} g_m(y)² dyF(dm) < +∞, then X has second-order moments</p>

$$Cov(X(z), X(z+x)) = \mathbb{E}(X(z)X(z+x)) - \mathbb{E}(X(z))\mathbb{E}(X(z+x))$$
$$= \lambda \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} g_m(y)g_m(y-x) \, dy \, F(dm)$$
$$= \lambda \rho(x).$$

In particular

$$\operatorname{Var}(X(x)) = \operatorname{Var}(X(0)) = \lambda \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} g_m(y)^2 \, dy \, F(dm).$$

• When moreover the intensity λ goes to $+\infty$, the normalized random field

$$Z(x) = \frac{X(x) - \mathbb{E}(X(x))}{\sqrt{\lambda}}$$

converges (f.d.d.) to a stationary centered Gaussian field with covariance ρ .

Example 1 : disk with random radius

Let d = 2, $g = 1_D$, $U = (0, T)^2$ and consider random disk of radius $m = m_1$ or $m = m_2$ with $0 < m_1 < m_2$ (each with probability 1/2) with intensity $\lambda > 0$

- The number of centers in $(-m_2, T + m_2)^2$ is a Poisson random variable of parameter $\lambda(T + 2m_2)^2 \longrightarrow n$
- The centers x_1, \ldots, x_n are thrown uniformly, independently on $(-m_2, T + m_2)^2$
- The radius *R*₁,..., *R_n* are attached to each center by flipping a coin to choose between *m*₁ or *m*₂.

We consider the excursion set or the level set of level $t \in \mathbb{R}$ of X in U defined by

 $E_X(t) \cap U := \{x \in U; X(x) \ge t\} \text{ with } E_X(t) = \{X \ge t\}.$

view 3D

view 2D

t = 0.5

t = 1.5

some level lines

t = 2.5

Example 2 : Gaussian kernel

Let us choose
$$g(x) = e^{-\frac{\|x\|^2}{2}}$$
 instead of 1_D .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

What can be said about "mean" geometry of excursion sets? Area? Perimeter? Euler Characteristic=# connected components - # holes?

Known results for

- Boolean model : Mecke (2001), Mecke, Wagner (1991)
- Smooth Gaussian random fields : Adler (2000), Adler, Taylor (2007), Azaïs, Wschebor (2009), ...
- High levels : Adler, Samorodnitsky, Taylor (2010,2013),...

Two different frameworks

1 Elementary : g is piecewize constant with compact support

2 Smooth : g is at least C^3

- 1 Introduction to random fields
- 2 Geometry of excursion sets
- 3 Case of elementary functions and shot noise fields

- 4 Case of smooth functions and random fields
- 5 Isotropic smooth random fields
- 6 Anisotropic Gaussian smooth random fields

Let $E \subset \mathbb{R}^2$ be a "nice set". Its curvature measures $\Phi_j(E, \cdot)$, for j = 0, 1, 2, are defined for any Borel set $U \subset \mathbb{R}^2$ by

- $\Phi_2(E, U) = |E \cap U|$, occupied area
- $\Phi_1(E, U) = \frac{1}{2} \mathcal{H}^1(\partial E \cap U) = \frac{1}{2} \operatorname{Per}(E, U)$, regularity property

• $\Phi_0(E, U) = \frac{1}{2\pi} TC(\partial E, U)$, connectivity property

where $\mathcal{H}^1(\partial E \cap U)$ is the lenght and $\mathrm{TC}(\partial E, U)$ the total curvature of the positively oriented curve ∂E in U.

For *E* a compact or convex set and $E \subset U$ also related to Minkowski or intrinsic volumes, widely used in mathematical morphology, convex and integral geometry : Hadwiger (1957), Federer (1959), Santaló (1976), Schneider & Weil (2008),...

Piecewise regular curve

A Jordan curve $\Gamma\subset\mathbb{R}^2$ is piecewise regular if $\Gamma=\mathcal{R}_\Gamma\cup\mathcal{C}_\Gamma$ with $\#\mathcal{C}_\Gamma<+\infty$

• for $x \in \mathcal{R}_{\Gamma}$ one has $x = \gamma(0)$ for some $s \in (-\varepsilon, \varepsilon)$ with $\gamma : (-\varepsilon, \varepsilon) \to \Gamma \ C^2$, arc length parametrized. Then, $\mathcal{H}^1(\gamma(-\varepsilon, \varepsilon)) = 2\varepsilon$, $\nu_{\Gamma}(x) = \gamma'(0)^{\perp}$. The signed curvature $\kappa_{\Gamma}(x)$ of Γ at x is

$$\kappa_{\Gamma}(x) = \langle \gamma''(0), \gamma'(0)^{\perp} \rangle.$$

• for $x \in C_{\Gamma}$ one has $x = \gamma(0)$ with $\gamma : (-\varepsilon, \varepsilon) \to \Gamma$ continuous and C^2 on $(-\varepsilon, \varepsilon) \smallsetminus \{0\}$ s.t. γ' admits limits $\gamma'(0^-) \in S^1$ and $\gamma'(0^+) \in S^1$ at 0. Then, $\mathcal{H}^1(\gamma(-\varepsilon, \varepsilon)) = 2\varepsilon$. The **turning angle** at a corner point $x = \gamma(0) \in C_{\Gamma}$ is the angle $\alpha_{\Gamma}(x) \in (-\pi, \pi)$ between the tangent "before" and the one "after" x

$$\alpha_{\Gamma}(x) = \operatorname{Arg} \gamma'(0^+) - \operatorname{Arg} \gamma'(0^-) \quad \in (-\pi, \pi)$$

Total curvature

The **total curvature** of Γ in U is defined as

$$TC(\Gamma, U) := \int_{\mathcal{R}_{\Gamma} \cap U} \kappa_{\Gamma}(x) \mathcal{H}^{1}(dx) + \sum_{x \in \mathcal{C}_{\Gamma} \cap U} \alpha_{\Gamma}(x).$$
$$D = \{x; \|x\| \le R\}$$
$$C = \{x; \|x\|_{\infty} \le R$$

$$\kappa_{\partial D}(x) = 1/R \& C_{\partial D}(x) = \emptyset$$

TC($\partial D, U$) = $1/R \times 2\pi R = 2\pi$

 $\kappa_{\partial C}(x) = 0 \& \alpha_{\partial D}(x) = \pi/2$ $\pi \quad \operatorname{TC}(\partial C, U) = 4 \times \pi/2 = 2\pi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Total curvature : example

■
$$\forall x \in \mathcal{R}_{\partial A}, \kappa_{\partial A}(x) = 0$$

■ $\# \mathcal{C}_{\partial A} = 12$ and $\alpha_{\partial A}(x) = \pm \pi/2$

Total curvature : example

?

◆□◆ ▲□◆ ▲目◆ ▲目◆ ▲□◆

Total curvature : example

$$TC(\partial A, U) = TC(\Gamma_1, U) + TC(\Gamma_2, U)$$

= $(6 \times \pi/2 + 2 \times (-\pi/2)) + 4 \times (-\pi/2) = 0$
Per(A, U) = 380

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Total curvature and Euler characteristic

Theorem (Gauss-Bonnet)

Let $E \subset U$ be a regular region ie $E = \overset{\circ}{E}$ such that $\partial E = \bigcup_{i=1}^{n} \Gamma_i$ is a finite union of disjoint positively oriented Jordan piecewise regular curves. then

$$\mathrm{TC}(\partial E, U) := \sum_{i=1}^{n} \mathrm{TC}(\Gamma_i, U) = 2\pi \chi(E) \ (= \ 2\pi \Phi_0(E, U))$$

where $\chi(E) \in \mathbb{Z}$ is the Euler characteristic of *E*.

 $\chi(E) = \#$ connected components - # holes.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Geometry of excursion sets

Let $X = (X(x))_{x \in \mathbb{R}^2}$ be a stationary "nice" random field and $U \subset \mathbb{R}^2$ a bounded open rectangle. For $t \in \mathbb{R}$, we consider for the excursion set of level t

$$E_X(t) := \{x \in \mathbb{R}^2; X(x) \ge t\}.$$

the **LK curvatures** of the excursion set $E_X(t)$ within \overline{U} are classicaly defined as

$$C_j(X, t, \overline{U}) := \Phi_j(E_X(t) \cap \overline{U}, \overline{U}), \text{ for } j = 0, 1, 2.$$

and, assuming the limits exist, the associated LK densities are

$$C_j^*(X,t) := \lim_{\overline{U} \neq \mathbb{R}^2} \frac{\mathbb{E}[C_j(X,t,\overline{U})]}{|\overline{U}|}, \text{ for } j = 0, 1, 2,$$

where $\lim_{\overline{U} \neq \mathbb{R}^2}$ stands for the limit along any sequence of bounded rectangles that grows to \mathbb{R}^2 . Note that for j = 2, by stationarity, $\mathbb{E}[C_2(X, t, \overline{U})] = |E_X(t) \cap \overline{U}| = \mathbb{P}(X(0) \ge t)|\overline{U}|$, s.t.

 $C_2^*(X,t) = \mathbb{P}(X(0) \ge t)$

LK densities

Moreover

$$C_{j}(X, t, \overline{U}) = \Phi_{j}(E_{X}(t) \cap \overline{U}, \overline{U}) = \Phi_{j}(E_{X}(t), U) + \Phi_{j}(E_{X}(t) \cap \overline{U}, \partial U).$$

Then $\frac{\Phi_{j}(E_{X}(t), U)}{|U|}$ is an unbiased, strongly consistent estimator of $C_{j}^{*}(X, t)$
 $\frac{\mathbb{E}\left[\Phi_{j}(E_{X}(t), U)\right]}{|U|} = C_{j}^{*}(X, t)$ with $\lim_{U \nearrow \mathbb{R}^{2}} \frac{\Phi_{j}(E_{X}(t), U)}{|U|} = C_{j}^{*}(X, t)$ a.s..

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a "nice" function and note

$$E_f(t) = \{x \in \mathbb{R}^2; f(x) \ge t\}.$$

Remark that when $t < \min_{\overline{U}} f$ or $t > \max_{\overline{U}} f$, then $\partial E_f(t) \cap \overline{U} = \emptyset$. We consider for any h bounded continuous function on \mathbb{R}

$$L_f\Phi_1(h,U):=\int_{\mathbb{R}}h(t)\Phi_1(E_f(t),U)dt=rac{1}{2}\int_{\mathbb{R}}h(t)\mathcal{H}^1(\partial E_f(t)\cap U)dt;$$

$$L_f\Phi_0(h,U):=\int_{\mathbb{R}}h(t)\Phi_0(E_f(t),U)dt=\frac{1}{2\pi}\int_{\mathbb{R}}h(t)\mathrm{TC}(\partial E_f(t),U)dt.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 Introduction to random fields
- 2 Geometry of excursion sets
- 3 Case of elementary functions and shot noise fields

- 4 Case of smooth functions and random fields
- 5 Isotropic smooth random fields
- 6 Anisotropic Gaussian smooth random fields

The case of elementary functions

Definition

The function f is said elementary function if f is a piecewise constant function taking a locally finite number of values and if S_f the discontinuity set of f can be decomposed as

$$\mathcal{S}_{f} = \underset{t \in \mathbb{R}}{\cup} \partial E_{f}(t) = \mathcal{R}_{f} \cup \mathcal{C}_{f} \cup \mathcal{I}_{f}, \text{ where }:$$

From left to right : a regular point, a corner point and an intersection point one

In this case writing $H(t) = \int_0^t h(s) ds$ we obtain

$$\begin{split} L_{f}\Phi_{1}(h,U) &= \frac{1}{2} \int_{\mathcal{R}_{f}\cap U} [H(f^{+}(x)) - H(f^{-}(x))] \mathcal{H}^{1}(dx) \\ L_{f}\Phi_{0}(h,U) &= \frac{1}{2\pi} \int_{\mathcal{R}_{f}\cap U} [H(f^{+}(x)) - H(f^{-}(x))] \kappa_{f}(x) \mathcal{H}^{1}(dx) \\ &+ \frac{1}{2\pi} \sum_{x \in \mathcal{C}_{f}\cap U} [H(f^{+}(x)) - H(f^{-}(x))] \alpha_{f}(x) \\ &+ \frac{1}{2\pi} \sum_{x \in \mathcal{I}_{f}\cap U} [H(f^{+}(x)) + H(f^{-}(x)) - H(f^{+}_{-}(x)) - H(f^{+}_{+}(x))] \beta_{f}(x). \end{split}$$

Elementary Shot Noise fields

Consider

$$X(x) = \sum_{i} g_{m_i}(x - x_i)$$

For g_m elementary with $\mathcal{S}_{g_m} = \mathcal{R}_{g_m} \cup \mathcal{C}_{g_m},$ + technical assumptions, the shot noise field X is elementary with

$$\begin{array}{l} & \mathcal{R}_{X} = \bigcup_{i} \tau_{x_{i}} \mathcal{R}_{g_{m_{i}}} \smallsetminus \left(\bigcup_{i \neq j} \tau_{x_{i}} \mathcal{R}_{g_{m_{j}}} \cap \tau_{x_{j}} \mathcal{R}_{g_{m_{j}}} \right), \text{ and for} \\ & x \in \tau_{x_{i}} \mathcal{R}_{g_{m_{i}}} \cap \mathcal{R}_{X} \\ & X^{\pm}(x) = \sum_{j \neq i} g_{m_{j}}(x - x_{j}) + g_{m_{i}}^{\pm}(x - x_{i}) \end{array} \\ & \mathcal{C}_{X} = \bigcup_{i} \tau_{x_{i}} \mathcal{C}_{g_{m_{i}}}, \text{ and for } x \in \tau_{x_{i}} \mathcal{C}_{g_{m_{i}}} \cap \mathcal{R}_{X} \\ & X^{\pm}(x) = \sum_{j \neq i} g_{m_{j}}(x - x_{j}) + g_{m_{i}}^{\pm}(x - x_{i}) \end{aligned} \\ & \mathcal{I}_{X} = \left(\bigcup_{i \neq j} \tau_{x_{i}} \mathcal{R}_{g_{m_{i}}} \cap \tau_{x_{j}} \mathcal{R}_{g_{m_{j}}} \right) \text{ and for } x \in \tau_{x_{i}} \mathcal{R}_{g_{m_{i}}} \cap \tau_{x_{j}} \mathcal{R}_{g_{m_{j}}} \\ & \mathcal{X}^{\pm}(x) = \sum_{k \neq i, j} g_{m_{k}}(x - x_{k}) + g_{m_{i}}^{\pm}(x - x_{i}) + g_{m_{j}}^{\pm}(x - x_{j}) \text{ and} \\ & X_{-}^{+}(x) = \sum_{k \neq i, j} g_{m_{k}}(x - x_{k}) + g_{m_{i}}^{+}(x - x_{i}) + g_{m_{j}}^{-}(x - x_{j}) \\ & X_{+}^{-}(x) = \sum_{k \neq i, j} g_{m_{k}}(x - x_{k}) + g_{m_{i}}^{-}(x - x_{i}) + g_{m_{j}}^{+}(x - x_{j}) \end{aligned}$$

Weak formula for Shot Noise fields

Using Slivnyak-Mecke formula, Fubini and stationarity

$$\mathbb{E}(L_X \Phi_1(h, U)) = \lambda |U| \int_{\mathbb{R}^\ell} L_{g_m} \Phi_1(\overline{h}_{X_{\Phi}(0)}, \mathbb{R}^2) F(dm)$$

$$\mathbb{E}(L_X \Phi_0(h, U)) = \lambda |U| \int_{\mathbb{R}^\ell} \left(L_{g_m} \Phi_0(\overline{h}_{X_{\Phi}(0)}, \mathbb{R}^2) + \lambda I(\overline{h}_{X_{\Phi}(0)}, m) \right) F(dm),$$

where

$$\overline{h}_{X_{\Phi}(0)}(s) = \mathbb{E}(h(X_{\Phi}(0)+s)),$$

 and

$$I(\overline{h}_{X_{\Phi}(0)},m) = \frac{1}{4\pi} \int_{\mathbb{R}^{\ell}} \int_{\mathbb{R}^{2}} \sum_{z \in \tau_{x} \mathcal{R}_{g_{m}} \cap \mathcal{R}_{g_{m'}}} d_{S^{1}}(\nu_{g_{m}}(z-x),\nu_{g_{m'}}(z))$$

$$\times \int_{g_{m'}^{-}(z)}^{g_{m'}(z)} \left(\overline{h}_{X_{\Phi}(0)}(s+g_{m}^{+}(z-x)) - \overline{h}_{X_{\Phi}(0)}(s+g_{m}^{-}(z-x)) \right) ds dx F(dm').$$
LK densities for Shot Noise fields

Considering $g = 1_D$ and $g_m = 1_{D_m}$ so that

•
$$\Phi_1(E_{g_m}(t), \mathbb{R}^2) = \frac{1}{2} \operatorname{Per}(E_{g_m}(t), \mathbb{R}^2) = \pi m \mathbb{1}_{0 < t \le 1},$$

•
$$\Phi_0(E_{g_m}(t), \mathbb{R}^2) = 1_{0 < t \le 1}$$

and according to the kinematic formula we have

$$\int_{\mathbb{R}^2} \sum_{z \in \tau_x \partial D_m \cap \partial D_{m'}} d_{S^1}(\nu_{g_m}(z-x), \nu_{g_{m'}}(z)) dx = 2\pi m \times 2\pi m'.$$

Introducing $\overline{p} = \int_{\mathbb{R}^+} 2\pi m F(dm)$

$$\begin{split} \mathbb{E}(L_X\Phi_1(h,U)) &= \frac{\lambda}{2}|U|\int_0^1\overline{h}_{X_\Phi(0)}(s)\overline{p}ds\\ \mathbb{E}(L_X\Phi_0(h,U)) &= \lambda|U|\int_0^1\left(\overline{h}_{X_\Phi(0)}(s) + \frac{\lambda}{4\pi}\overline{p}^2\left(\overline{h}_{X_\Phi(0)}(s+1) - \overline{h}_{X_\Phi(0)}(s)\right)\right)ds. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Application to Shot Noise

Since
$$X_{\Phi}(0) \sim \mathcal{P}(\lambda \overline{a})$$
 with $\overline{a} = \int_{\mathbb{R}^+} \pi m^2 F(dm)$, we get for $s \in [0, 1)$
 $\overline{h}_{X_{\Phi}(0)}(s) = \mathbb{E}(h(X_{\Phi}(0) + s))$
 $= \sum_{k=0}^{+\infty} h(k+s)e^{-\lambda \overline{a}} \frac{(\lambda \overline{a})^k}{k!} = \sum_{k=0}^{+\infty} h(k+s)e^{-\lambda \overline{a}} \frac{(\lambda \overline{a})^{\lfloor k+s \rfloor}}{\lfloor k+s \rfloor!}$

It follows that

$$\begin{split} \int_{\mathbb{R}} h(t) C_{1}^{*}(X, t) dt &= \frac{\mathbb{E}(L_{X} \Phi_{1}(h, U))}{|U|} \\ &= \frac{\lambda}{2} \int_{0}^{1} \overline{h}_{X_{\Phi}(0)}(s) \overline{p} ds \\ &= \frac{\lambda}{2} \int_{0}^{+\infty} h(t) \overline{p} e^{-\lambda \overline{a}} \frac{(\lambda \overline{a})^{\lfloor t \rfloor}}{\lfloor t \rfloor!} dt \end{split}$$

Hence for a.e. $t \ge 0$,

$$C_1^*(X,t) = e^{-\lambda \overline{a}} \frac{(\lambda \overline{a})^{\lfloor t \rfloor}}{\lfloor t \rfloor!} \frac{\lambda \overline{p}}{2}$$

Illustration

In a similar way, by continuity, for $t\in \mathbb{R}^+\setminus \mathbb{Z}^+$, it holds that

Shot noise on a domain of size $2^{10} \times 2^{10}$ pixels, with intensity $\lambda = 0.0005$, and random disks of radius R = 50 or R = 100 (each with probability 0.5).

Illustration

Critical levels

Extension

Taking $Y = X^{(1)} - X^{(2)}$ where $X^{(1)}, X^{(2)}$ are iid Shot noise of disks we have excursion sets that are not positive reach set but still elementary sets

t = -0.5

t = 0.5

t = 1.5 < □ → < @ → < ≧ → < ≧ → < ≧ → < ≥ → < <

LK densities

For $t \in \mathbb{R} \setminus \mathbb{Z}$, it holds that for $\nu = 2\lambda$ and $I_n(x) = \sum_{m=0}^{\infty} \frac{(x/2)^{2^{m+n}}}{m!\Gamma(m+n+1)}$ the modified Bessel function of the first kind

$$C_{0}^{*}(Y,t) = \frac{\nu}{2} e^{-\nu\bar{a}} \left[(I_{|\lfloor t \rfloor|} - I_{|\lfloor t \rfloor+1|})(\nu\bar{a}) + \frac{\nu\bar{p}^{2}}{8\pi} (I_{|\lfloor t \rfloor-1|} + I_{|\lfloor t \rfloor|} - I_{|\lfloor t \rfloor+1|} - I_{|\lfloor t \rfloor+2|})(\nu\bar{a}) \right],$$

$$C_{1}^{*}(Y,t) = \frac{\nu\bar{p}}{4} e^{-\nu\bar{a}} (I_{|\lfloor t \rfloor|} + I_{|\lfloor t \rfloor+1|})(\nu\bar{a})$$

$$C_{2}^{*}(Y,t) = e^{-\nu\bar{a}} \sum_{k>t} I_{|k|}(\nu\bar{a}),$$

$$\int_{u=1}^{2\pi} \frac{1}{4\pi} \int_{u=1}^{2\pi} \frac{1}{4\pi} \int_{$$

Main References

- **R**. Adler, J. Taylor : Random fields and Geometry. *Springer, NY (2007)*.
- H. Biermé, A. Desolneux : On the perimeter of excursion sets of shot noise random fields. Annals of Probability, 44(1), 521-543, (2016).
- H. Biermé, A. Desolneux : Mean Geometry of 2D random fields : level perimeter and level total curvature integrals. *Annals of Applied Probability, 2020.*
- H. Biermé, E. Di Bernardino, C. Duval, A. Estrade : Lipschitz Killing curvatures of excursion sets for 2D random fields. *Electronic Journal of Statistics*, 13, 536-581, (2019).
 - K. R. Mecke, H. Wagner : Euler characteristic and related measures for random geometric sets. *Journal of Statistical Physics*, **64**(3), 843-850, (1991).
- R. Schneider, W. Weil : Stochastic and integral geometry. *Probability and its Applications. Springer-Verlarg, Berlin, (2008).*
- C. Thäle : 50 years sets with positive reach-a survey. Surveys in Mathematics and its Applications, 3, 123-165, (2008).

- 1 Introduction to random fields
- 2 Geometry of excursion sets
- 3 Case of elementary functions and shot noise fields

- 4 Case of smooth functions and random fields
- 5 Isotropic smooth random fields
- 6 Anisotropic Gaussian smooth random fields

Lecture 2 :

1 Case of smooth functions and random fields

- **1** Geometry of smooth excursion sets
- 2 LK densities for smooth random fields
- 2 Isotropic smooth random fields
 - 1 LK densities for isotropic fields
 - 2 Gaussian and related smooth isotropic fields
 - 3 Smooth isotropic shot noise fields
- 3 Anisotropic Gaussian smooth random fields
 - **1** LK densities for anisotropic Gaussian
 - 2 Geometrical spectral moments and ratio of anisotropy
 - 3 Effective level and effective ratio of anisotropy

Assume that $f: \mathbb{R}^2 \to \mathbb{R}$ is C^2 . For $t \in \mathbb{R}$, we consider the excursion set of level t

$$E_f(t) := \{x \in \mathbb{R}^2; f(x) \ge t\}.$$

We assume it is observed through U a bounded **open rectangle**.

Credit : BrainMapping : an encyclopedic reference- Topological Inference

Assume $f : \mathbb{R}^2 \to \mathbb{R}$ is C^2 . Since f is continuous, we have for $t \in \mathbb{R}$

$$\partial E_f(t) = \{x \in \mathbb{R}^2; f(x) = t\},\$$

corresponding to a level line of f. Hence for $t \in \mathbb{R}$, if $x \in \partial E_f(t)$ with $\nabla f(x) \neq 0$, the unit vector $\nu_f(x) = \frac{\nabla f(x)}{\|\nabla f(x)\|}$ is the normal vector of $\partial E_f(t)$ at x with

$$D\nu_f(x) = \frac{1}{\|\nabla f(x)\|} \left[I_2 - \nu_f(x)\nu_f(x)^T \right] D^2 f(x),$$

where $D^2 f(x)$ is the Hessian matrix. Moreover the **signed curvature** at x may be written as

$$\kappa_f(x) = -\langle
u_f(x)^{\perp}, D
u_f(x)
u_f(x)^{\perp}
angle = -rac{1}{\|
abla f(x)\|} \langle
u_f(x)^{\perp}, D^2 f(x)
u_f(x)^{\perp}
angle.$$

Coarea formula

By Morse-Sard theorem, the image by f of the set of critical values of f has measure 0 in \mathbb{R} . For a.e. level $t \in \mathbb{R}$ and U open bounded,

$$\Phi_1(E_f(t), U) = \frac{1}{2} \int_{\partial E_f(t) \cap U} 1\mathcal{H}^1(dx)$$

$$\Phi_0(E_f(t), U) = \frac{1}{2\pi} \int_{\partial E_f(t) \cap U} \kappa_f(x) \mathcal{H}^1(dx).$$

The **coarea formula** states that, for any borel function $g : \mathbb{R}^2 \to \mathbb{R}$ s.t $\int_U |g(x)| \|\nabla f(x)\| dx < +\infty$,

$$\int_{\mathbb{R}}\int_{\partial E_{f}(t)\cap U}g(x)\mathcal{H}^{1}(dx)\,dt=\int_{U}g(x)\|\nabla f(x)\|\,dx$$

Let us choose $h : \mathbb{R} \to \mathbb{R}$ a bounded continuous function (test function) such that multiplying g(x) by h(f(x)) we get

$$\int_{\mathbb{R}} h(t) \int_{\partial E_f(t) \cap U} g(x) \mathcal{H}^1(dx) \, dt = \int_{U} h(f(x)) g(x) \|\nabla f(x)\| \, dx.$$

Let $h : \mathbb{R} \to \mathbb{R}$ be a bounded continuous function and $\int_U |g(x)| \|\nabla f(x)\| dx < +\infty$, recall the **Coarea formula** :

$$\int_{\mathbb{R}} h(t) \int_{\partial E_f(t) \cap U} g(x) \mathcal{H}^1(dx) \, dt = \int_U h(f(x)) g(x) \|\nabla f(x)\| \, dx.$$

Coarea formula with g(x) = 1:

$$\int_{\mathbb{R}} h(t)\Phi_1(E_f(t), U)dt = \frac{1}{2}\int_U h(f(x))\|\nabla f(x)\|\,dx.$$

Coarea formula with $g(x) = \kappa_f(x) \mathbb{1}_{\|\nabla f(x)\|>0}$ for

$$\kappa_f(x) = -rac{1}{\|
abla f(x)\|} \langle
u_f(x)^{\perp}, D^2 f(x)
u_f(x)^{\perp}
angle, ext{ and }
u_f(x) = rac{
abla f(x)}{\|
abla f(x)\|},$$

$$\int_{\mathbb{R}} h(t)\Phi_0(E_f(t),U)dt = -\frac{1}{2\pi}\int_U h(f(x))\langle \nu_f(x)^{\perp}, D^2f(x)\nu_f(x)^{\perp}\rangle 1_{\|\nabla f(x)\|>0} dx$$

Let $X = (X(x))_{x \in \mathbb{R}^2}$ be a stationary real random field a.s. C^2 with X(0), $\nabla X(0)$ and $D^2 X(0) L^1$ and $\mathbb{P}(\|\nabla X(0)\| = 0) = 0$. We consider the excursion set of level $t \in \mathbb{R}$

$$E_X(t) := \{x \in \mathbb{R}^2; X(x) \ge t\}.$$

First recall that by stationarity

$$\mathbb{E}[\Phi_2(E_X(t), U)] = \mathbb{E}\left(\int_U \mathbf{1}_{X(x) \ge t} dx\right) = |U| \mathbb{P}(X(0) \ge t).$$

Moreover, taking expectation it follows that for all *h* bounded continuous, writing $\nabla X(0) = \|\nabla X(0)\|\nu_X(0)$ a.s.,

$$\int_{\mathbb{R}} h(t) \mathbb{E}[\Phi_1(E_X(t), U)] dt = |U| \times \frac{1}{2} \mathbb{E}(h(X(0)) ||\nabla X(0)||)$$

$$\int_{\mathbb{R}} h(t) \mathbb{E}[\Phi_0(E_X(t), U)] dt = |U| \times \frac{-1}{2\pi} \mathbb{E}(h(X(0)) \langle \nu_X(0)^{\perp}, D^2 X(0) \nu_X(0)^{\perp} \rangle)$$

We therefore consider LK densities :

$$C_j^*(X,t) = \frac{1}{|U|} \mathbb{E}[\Phi_j(E_X(t),U)].$$

$$\begin{split} &\int_{\mathbb{R}} h(t) C_{1}^{*}(X,t) dt &= \frac{1}{2} \mathbb{E} \left(h(X(0)) \| \nabla X(0) \| \right); \\ &\int_{\mathbb{R}} h(t) C_{0}^{*}(X,t) dt &= \frac{-1}{2\pi} \mathbb{E} \left(h(X(0)) \langle \nu_{X}(0)^{\perp}, D^{2} X(0) \nu_{X}(0)^{\perp} \rangle \right). \end{split}$$

Note that $\int_{\mathbb{R}} C_1^*(X,t) dt = \frac{1}{2} \mathbb{E} \left(\| \nabla X(0) \| \right)$ (total variation)

Let us remark that for any rotation Q,

$$C_j^*\left(rac{X\circ Q^T-m}{\sigma},t
ight)=C_j^*(X,\sigma t+m).$$

such that for a second order random field X, we can assume that it is standard with $\Gamma_{\nabla X}$ diagonal matrix

- $\bullet \mathbb{E}(X(0)) = 0$
- Var(X(0)) = 1

•
$$\operatorname{Cov}(X_i(0), X_j(0)) = \gamma_i \delta_{i,j}$$

Here and in the sequel we write $X_i = \partial_i X$ and $X_{ij} = \partial_{ij} X$. Introducing Θ such that $\nu_X = (\cos(\Theta), \sin(\Theta))$ we also have

 $\mathbb{E}\left(h(X(0))\langle\nu_X(0)^{\perp}, D^2X(0)\nu_X(0)^{\perp}\rangle\right)$ $=\mathbb{E}\left(h(X(0))\left[X_{11}(0)\sin^2(\Theta) + X_{22}(0)\cos^2(\Theta) - X_{12}(0)\sin(2\Theta)\right]\right)$

LK densities at a fixed level

When X(0) admits $p_{X(0)}$ for density one has for a.e. t

•
$$C_1^*(X,t) = \frac{1}{2}\mathbb{E}(\|\nabla X(0)\||X(0)=t)p_{X(0)}(t)$$

•
$$C_0^*(X,t) = -\frac{1}{2\pi} \mathbb{E}\left(\langle \nu_X(0)^{\perp}, D^2 X(0) \nu_X(0)^{\perp} \rangle | X(0) = t \right) p_{X(0)}(t).$$

Comments

- If one knows that $t \mapsto C_1^*(X, t)$ or $t \mapsto C_0^*(X, t)$ are continuous then a.e. is enough !
- In Berzin, Latour, Leon (2017) general assumptions to ensure that $t \mapsto C_1^*(X, t)$ is continuous;
- For a fixed level $t \in \mathbb{R}$ one has to ensure that it is not a critical level

$$\mathbb{P}\left(\exists x \in \mathbb{R}^2; X(x) = t, \nabla X(x) = 0\right) = 0.$$

Bulinskaya's Lemma holds for instance when X is C^3 (see also D'Armenato, Azais, Leon, 2023 for weakest assumptions)

- 1 Introduction to random fields
- 2 Geometry of excursion sets
- 3 Case of elementary functions and shot noise fields

- 4 Case of smooth functions and random fields
- 5 Isotropic smooth random fields
- 6 Anisotropic Gaussian smooth random fields

LK densities for isotropic fields

When X is also **isotropic**, let introduce

$$J = \|
abla X(0) \| e^{i\Theta}$$
 and $K = rac{X_{22}(0) - X_{11}(0) + 2iX_{12}(0)}{4}$

The rotation invariance implies that for any $heta\in[0,2\pi)$,

$$(X(0), J, K) \stackrel{d}{=} (X(0), e^{i\theta}J, e^{2i\theta}K).$$
(1)

٠

Writing $\|\nabla X(0)\| = \frac{1}{4} \int_0^{2\pi} |\Re(Je^{-i\theta})| d\theta$ we get $\mathbb{E}(h(X(0))\|\nabla X(0)\|) = \frac{\pi}{2} \mathbb{E}(h(X(0))|X_1(0)|).$

Moreover,

$$\mathbb{E}\left(h(X(0))\langle\nu_X(0)^{\perp},D^2X(0)\nu_X(0)^{\perp}\rangle\right)=\alpha_0(h)+2\Re\alpha_2(h),$$

with

$$\alpha_0(h) = \mathbb{E}\left(h(X(0))X_{11}(0)\right), \text{ and } \alpha_2(h) = \mathbb{E}\left(h(X(0))Ke^{2i\Theta}\right).$$

Noting that for all $k \neq 2$

$$\mathbb{E}\left(h(X(0))\mathit{K}e^{ik\Theta}
ight)=0,$$

it follows that for any continuous bounded 2π periodic function

$$\mathbb{E}\left(h(X(0))\mathsf{K}g(\Theta)\right)=c_2(g)\mathbb{E}\left(h(X(0))\mathsf{K}e^{2i\Theta}\right),$$

with

$$c_2(g) = rac{1}{2\pi}\int_0^{2\pi} e^{-2i heta}g(heta)d heta.$$

In particular, for $g(\theta) = \sin(2\theta)$ we obtain

$$2\Re \alpha_2(h) = -2\mathbb{E}(h(X(0))X_{12}(0)\sin(2\Theta)).$$

Gaussian case

For X a stationary isotropic standard C^2 Gaussian random field we note $\rho(x) = Cov(X(x), X(0))$, and the second spectral moment

$$\gamma_2 = -\partial_k^2 \rho(0) = -\operatorname{Cov}(X(0), X_{kk}(0)) = \operatorname{Var}(X_k(0)).$$

By stationarity $Cov(X(0), X_k(0)) = Cov(X_k(0), X_{ij}(0)) = 0$ and $\nabla X(0)$ is **independent** of $(X(0), D^2X(0))$

$$\mathbb{E}(h(X(0))|X_1(0)|) = \mathbb{E}(h(X(0))) \mathbb{E}(|X_1(0)|) = \sqrt{\frac{2\gamma_2}{\pi}} \mathbb{E}(h(X(0)));$$

$$\begin{aligned} \alpha_0(h) &= & \mathbb{E}\left(h(X(0))X_{11}(0)\right) = \mathbb{E}\left(h(X(0))\mathbb{E}\left(X_{11}(0)|X(0)\right)\right) \\ &= & \frac{-\gamma_2}{\sigma^2}\mathbb{E}\left(h(X(0))X(0)\right); \end{aligned}$$

 $2\Re \alpha_2(h) = -\mathbb{E}(h(X(0))X_{12}(0)\sin(2\Theta)) = \mathbb{E}(h(X(0))X_{12}(0))\mathbb{E}(\sin(2\Theta))$ = 0.

Gaussian case

This yields to for a.e. $t \in \mathbb{R}$

$$C_0^*(X,t) = rac{1}{(\sqrt{2\pi})^3} \, \gamma_2 \, t \, e^{-rac{t^2}{2}} \, ext{ and } \, C_1^*(X,t) = rac{1}{4} \, \gamma_2^{1/2} \, e^{-rac{t^2}{2}}.$$

 $\rho(x) = e^{-\frac{\gamma_2}{2} \|x\|^2}$, for $\gamma_2 = 0.02$ in a domain of size 2^{10} $\times 2^{10}$ pixels.

Statistical inference

In practise, it is often computed for j = 0, 1, 2,

 $C_j(X, t, \overline{U}) := \Phi_j(E_X(t) \cap \overline{U}, \overline{U})$ (empirically accessible)

Recall that

 $C_{j}(X, t, \overline{U}) = \Phi_{j}(E_{X}(t), U) + \Phi_{j}(E_{X}(t) \cap \overline{U}, \partial \overline{U}),$ with $\mathbb{E}[\Phi_{j}(E_{X}(t), U)] = |U| \times C_{j}^{*}(X, t).$

Kinematic formula

For **isotropic** random fields, $E_X(t)$ is an isotropic stationary closed random set By kinematic formula (see Schneider, Weyl (2008)) under good assumptions, one has

$$\begin{split} \mathbb{E}[C_0(X,t,\overline{U})] &= C_0^*(X,t)|\overline{U}| + \frac{1}{\pi}C_1^*(X,t)\mathcal{H}^1(\partial\overline{U}) + C_2^*(X,t),\\ \mathbb{E}[C_1(X,t,\overline{U})] &= C_1^*(X,t)|\overline{U}| + \frac{1}{2}C_2^*(X,t)\mathcal{H}^1(\partial\overline{U}),\\ \mathbb{E}[C_2(X,t,\overline{U})] &= C_2^*(X,t)|\overline{U}| \end{split}$$

Hence unbiased estimators for $C_i^*(X, t)$ may be obtained as

$$\hat{C}_{2}(X,t) = \frac{1}{|\overline{U}|} C_{2}(X,t,\overline{U}),$$

$$\hat{C}_{1}(X,t) = \frac{1}{|\overline{U}|} C_{1}(X,t,\overline{U}) - \frac{\mathcal{H}^{1}(\partial\overline{U})}{2|\overline{U}|} \hat{C}_{2}(X,t),$$

$$\hat{C}_{0}(X,t) = \frac{1}{|\overline{U}|} C_{0}(X,t,\overline{U}) - \frac{\mathcal{H}^{1}(\partial\overline{U})}{\pi|\overline{U}|} \hat{C}_{1}(X,t) - \frac{1}{|\overline{U}|} \hat{C}_{2}(X,t).$$

Under good assumptions one can get

$$\frac{1}{\sqrt{|\overline{U}|}}\left(C_j(X,t,\overline{U})-\mathbb{E}(C_j(X,t,\overline{U}))\xrightarrow[\overline{U}\nearrow\mathbb{R}^2]{\mathcal{N}}(0,\sigma_j^2(t)),\right.$$

leading to

$$\sqrt{|\overline{U}|}\left(\hat{C}_j(X,t)-C_j^*(X,t)
ight) \underset{\overline{U}
earrow\mathbb{R}^2}{\longrightarrow} \mathcal{N}(0,\sigma_j^2(t)).$$

Some Ref on CLT : Spodarev (2012), Estrade, Leoń (2016), Müller (2017), Kratz Vadlamani (2018), Reddy et al (2018), Berzin (2021)...

Gaussian Kinematic formula

For Gaussian type random fields, X = F(G) with $F : \mathbb{R}^{\ell} \to \mathbb{R}$ and $G = (G_1, \ldots, G_{\ell})$ with G_1, \ldots, G_{ℓ} iid smooth standard Gaussian field with $Var(\nabla G_i) = \Gamma_{\nabla}$ the Gaussian kinematic formula (see Adler, Taylor (2007)) states under good assumptions,

$$\begin{split} \mathbb{E}[\mathcal{L}_{0}^{\nabla}(X,t,\overline{U})] &= \frac{1}{2\pi} \mathcal{M}_{2}(X,t) \mathcal{L}_{2}^{\nabla}(\overline{U}) + \frac{1}{\sqrt{2\pi}} \mathcal{M}_{1}(X,t) \mathcal{L}_{1}^{\nabla}(\overline{U}) \\ &+ \mathcal{M}_{0}(X,t) \mathcal{L}_{0}^{\nabla}(\overline{U}), \\ \mathbb{E}[\mathcal{L}_{1}^{\nabla}(X,t,\overline{U})] &= \frac{1}{2} \sqrt{\frac{\pi}{2}} \mathcal{M}_{1}(X,t) \mathcal{L}_{2}^{\nabla}(\overline{U}) + \mathcal{M}_{0}(X,t) \mathcal{L}_{1}^{\nabla}(\overline{U}), \\ \mathbb{E}[\mathcal{L}_{2}^{\nabla}(X,t,\overline{U})] &= \mathcal{M}_{0}(X,t) \mathcal{L}_{2}^{\nabla}(\overline{U}) \end{split}$$

with

$$\mathbb{P}(G(0) \in Tube(F,\rho)) = \mathcal{M}_0(X,t) + \rho \mathcal{M}_1(X,t) + \frac{1}{2}\rho^2 \mathcal{M}_2(X,t) + O(\rho^3),$$

and

$$Tube(F,\rho) := \{g \in \mathbb{R}^{\ell}; \text{dist} (g, F^{-1}([t, +\infty))) \leq \rho\}.$$

(Gaussian) Kinematic formula

For isotropic fields $\Gamma_{\nabla} = \gamma_2 I_2$ and

$$\mathbb{E}[\mathcal{L}_{j}^{\nabla}(X,t,\overline{U})] = \gamma_{2}^{j/2}C_{j}(X,t,\overline{U}).$$

It follows that

$$C_{0}^{*}(X,t) = \frac{\gamma_{2}}{2\pi} \mathcal{M}_{2}(X,t)$$
$$C_{1}^{*}(X,t) = \frac{1}{2} \sqrt{\frac{\pi}{2}} \sqrt{\gamma_{2}} \mathcal{M}_{1}(X,t)$$
$$C_{2}^{*}(X,t) = \mathcal{M}_{0}(X,t)$$

Remark that for X standard Gaussian, k = 1, G = X and F = Id, one has

$$\mathbb{P}(G(0) \in Tube(F,\rho)) = 1 - \Psi(t-\rho),$$
$$\mathcal{M}_0(X,t) = 1 - \Psi(t), \mathcal{M}_1(X,t) = \Psi'(t), \mathcal{M}_2(X,t) = -\Psi''(t)$$

Chi2 case

For $k \geq 1$, $Z_k = G_1^2 + \ldots + G_k^2$ and normalized field

$$\widetilde{Z}_k(x) := rac{1}{\sqrt{2k}}(Z_k(x)-k), \; x \in \mathbb{R}^2.$$

Then, for all $t>-\sqrt{k/2}$, $C_j^*(\widetilde{Z}_k,t)=C_j^*(Z_k,k+t\sqrt{2k})$ and

$$\begin{split} C_0^*(Z_k,t) &= \frac{\gamma_2}{\pi 2^{k/2} \Gamma(k/2)} t^{(k-2)/2} \left(t+1-k\right) \exp\left(-\frac{t}{2}\right), \\ C_1^*(Z_k,t) &= \frac{\sqrt{\pi \gamma_2}}{2^{(k+1)/2} \Gamma(k/2)} t^{(k-1)/2} \exp\left(-\frac{t}{2}\right), \\ C_2^*(Z_k,t) &= \int_t^{+\infty} \frac{1}{2^{k/2} \Gamma(k/2)} u^{(k-2)/2} \exp\left(-\frac{u}{2}\right) du, \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Chi2 case

 \widetilde{Z}_k for k = 2 and for iid standard G_1, \ldots, G_k with covariance function $\rho(x) = e^{-\frac{\gamma_2}{2} \|x\|^2}$, for $\gamma_2 = 0.02$ in a domain of size $2^{10}_{4} \times 2^{10}_{4}$ pixels.

Student case

For $k \geq 3$, $T_k = G_{k+1}/\sqrt{Z_k/k}$ and normalized field

$$\widetilde{T}_k(x) := \sqrt{(k-2)/k} T_k(x), \ x \in \mathbb{R}^2.$$

Then, $C_j^*(\widetilde{\mathcal{T}}_k,t) = C_j^*(\mathcal{T}_k,t\sqrt{k/(k-2)})$

$$C_0^*(\widetilde{\mathcal{T}}_k,t) = \frac{\gamma_2(k-1)}{4\pi} \frac{t}{\sqrt{k\pi}} \frac{\Gamma\left(\frac{k-1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} \left(1 + \frac{t^2}{k}\right)^{-\frac{k-1}{2}},$$

$$C_1^*(\widetilde{\mathcal{T}}_k,t) = \frac{\sqrt{\gamma_2}}{4} \left(1 + \frac{t^2}{k}\right)^{-\frac{k-1}{2}},$$

$$C_2^*(\widetilde{\mathcal{T}}_k,t) = \int_t^{+\infty} \frac{1}{\sqrt{k\pi}} \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} \left(1 + \frac{u^2}{k}\right)^{-\frac{k+1}{2}} du.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Student case

 \widetilde{T}_k for k = 4 and and for iid standard G_1, \ldots, G_{k+1} with covariance function $\rho(x) = e^{-\frac{\gamma_2}{2} \|x\|^2}$, for $\gamma_2 = 0.02$ in a domain of size $2^{10}_{+} \times 2^{10}_{+}$ pixels.

Spectral moment estimate

Using the fact that $\gamma_2 = \frac{2\pi}{M_2(X,t)} C_0^*(X,t)$ we can estimate it from a single excursion estimating first k using

$$\hat{k} = \operatorname{argmin}_k |\hat{\mathcal{C}}_2(X,t) - \mathcal{C}_2^*(X,k,t)|$$

and then plugging

$$\hat{\gamma}_2=rac{2\pi}{\mathcal{M}_2(X,\hat{k},t)}\hat{C}_0(X,t)$$

First line for $\chi^2(k)$ with k = 2 and second line for Stu(k) with k = 4 and $\gamma_2 = 0.02$ (日) (日) (日) (日) (日) (日) (日) (日)

Let X be a smooth (Poisson) shot noise random field given by

$$orall x \in \mathbb{R}^d, \ X(x) = \sum_{i \in I} g_{m_i}(x - x_i), \ ext{where}$$

- $\{x_i\}_{i \in I}$ is a Poisson point process of intensity $\lambda > 0$ in \mathbb{R}^2 ,
- {m_i}_{i∈1} are independent « marks » with distribution F(dm) on ℝ^ℓ, and independent of {x_i}_{i∈1}.
- The functions g_m are C^3 with for $|\mathbf{j}| \leq 3$

$$\int_{\mathbb{R}^{\ell}}\int_{\mathbb{R}^{2}}|\partial_{j}^{|j|}g_{m}(y)|dyF(dm)<+\infty$$

Recall that the characteristic function of X(x) is given by

$$\mathbb{E}\left(e^{i\xi X(x)}\right) = \exp\left(\lambda \int_{\mathbb{R}^{\ell} \times \mathbb{R}^{2}} [e^{i[\xi g_{m}(y)]} - 1]F(dm)dy\right).$$

When g is smooth, we have also access to joint law of $(X(x), \nabla X(x), D^2 X(x))$ via characteristic function and similar integral expression. In particular the joint characteristic function of X(x) and $\partial_1 X(x)$ is

$$\varphi(\xi, s) = \mathbb{E}\left(e^{i\xi X(x) + is\partial_{1}X(x)}\right)$$
$$= \exp\left(\lambda \iint \left[e^{i\xi g_{m}(y) + is\partial_{1}g_{m}(y)} - 1\right]F(dm) dy\right)$$

The main idea is therefore to take $h_{\xi}(t) = e^{it\xi}$ to compute $\mathcal{F}C_{j}^{*}(\xi) = \int_{\mathbb{R}} e^{it\xi}C_{j}^{*}(X, t)dt$. We obtain integral formulas :

$$\mathcal{F}C_1^*(\xi)=rac{1}{2}\int_0^{+\infty}rac{arphi(\xi,s)}{s}S_1(\xi,s)ds.$$
 $\mathcal{F}C_0^*(\xi)=S_0(\xi)arphi(\xi,0)+\int_0^{+\infty}rac{arphi(\xi,s)}{s}S_2(\xi,s)ds,$

with

$$S_{1}(\xi) = -i\lambda \int_{\mathbb{R}^{\ell}} \int_{\mathbb{R}^{2}} \partial_{1}g_{m}(y)e^{i[\xi g_{m}(y)+s\partial_{1}g_{m}(y)]} dy F(dm)$$

$$S_{0}(\xi) = -\frac{\lambda}{2\pi} \int_{\mathbb{R}^{\ell}} \int_{\mathbb{R}^{2}} \partial_{1}^{2}g_{m}(y)e^{i\xi g_{m}(y)} dy F(dm)$$

$$S_{2}(\xi,s) = \frac{\lambda}{2\pi} \int_{\mathbb{R}^{\ell}} \int_{\mathbb{R}^{2}} [\partial_{2}^{2}g_{m}(y) - \partial_{1}^{2}g_{m}(y)]e^{i[\xi g_{m}(y)+s\partial_{1}g_{m}(y)]} dy F(dm)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Shot noise Gaussian examples

We choose $g_m(y) = me^{-\frac{\|y\|^2}{2\sigma^2}}$ for $m \in \mathbb{R}$ and with F(dm) distribution of MTop : $M \sim \mathcal{E}(\mu)$, we find $\varphi(t) = \left(\frac{\mu}{\mu - it}\right)^{2\pi\lambda\sigma^2}$ and $X(x) \sim \gamma(\mu, 2\pi\lambda\sigma^2)$; Bottom : $M \sim \mathcal{L}(\mu)$, $\varphi(t) = \left(\frac{\mu^2}{\mu^2 + t^2}\right)^{\pi\lambda\sigma^2}$ and $X(x) \sim GS\mathcal{L}(\mu, \pi\lambda\sigma^2)$.

- 1 Introduction to random fields
- 2 Geometry of excursion sets
- 3 Case of elementary functions and shot noise fields

- 4 Case of smooth functions and random fields
- 5 Isotropic smooth random fields
- 6 Anisotropic Gaussian smooth random fields

Anisotropic smooth Gaussian fields

Let $X = (X(x))_{x \in \mathbb{R}^2}$ be a C^2 stationary Gaussian random field. We denote as usual $E_X(t)$ the excursion set of level $t \in \mathbb{R}$ Consider for instance the covariance function

$$\rho(x) = e^{-\frac{\gamma_1}{2}x_1^2} e^{-\frac{\gamma_2}{2}x_2^2}.$$

 $\gamma_1 = 0.002$

When X(0) admits a density, recall our general formulas for a.e. t

•
$$C_1^*(X,t) = \frac{1}{2}\mathbb{E}(\|\nabla X(0)\||X(0)=t)p_{X(0)}(t)$$

•
$$C_0^*(X,t) = -\frac{1}{2\pi} \mathbb{E}\left(\langle \nu_X(0)^{\perp}, D^2 X(0) \nu_X(0)^{\perp} \rangle | X(0) = t \right) p_{X(0)}(t).$$

Assume that X is standard and $\Gamma_{\nabla X} = \text{diag}(\gamma_1, \gamma_2)$ is diagonal Then $X_1(0)$ and $X_2(0)$ are independent and $X_{12}(0)$ is also independent from X(0), and recall that $\nabla X(0)$ is **independent** from X(0) and $D^2X(0)$ with

$$\mathbb{E}\left(X_{ii}(0)|X(0)=t\right)=-\gamma_i t.$$

Geometrical spectral moment

Writing $e_{\theta} = (\cos(\theta), \sin(\theta))$, we use

$$\mathbb{E}(\|
abla X(0)\|) = rac{1}{4}\int_{0}^{2\pi}\mathbb{E}(|\langle
abla X(0), e_{ heta}
angle|)d heta,$$

with

$$\langle
abla X(0), e_{ heta}
angle = X_1(0) \cos(heta) + X_2(0) \sin(heta),$$

$$egin{aligned} &\langle
abla X(0), e_ heta
angle \sim \sqrt{\gamma_1 \cos^2(heta) + \gamma_2 \sin^2(heta) \mathcal{N}(0,1)} ext{ with } \ &\mathbb{E}(|\mathcal{N}(0,1)|) = \sqrt{rac{2}{\pi}}. \end{aligned}$$

Proposition

$$C_1^*(X,t) = rac{1}{4}\sqrt{\gamma_{\operatorname{Per}}}e^{-t^2/2}, \, \, \textit{a.e.} \, \, t \in \mathbb{R}, \, \, \textit{where}$$

$$\gamma_{\mathrm{Per}} = \left(rac{1}{2\pi}\int_{0}^{2\pi}\sqrt{\gamma_{1}\cos^{2}(\theta)+\gamma_{2}\sin^{2}(\theta)}d heta
ight)^{2}$$

Let $\nu_X(0) = (\cos(\Theta), \sin(\Theta))$ with Θ independent from X(0), $D^2X(0)$,

$$\mathbb{E}\left(\left[X_{11}(0)\sin^2(\Theta) + X_{22}(0)\cos^2(\Theta) - X_{12}(0)\sin(2\Theta)\right] | X(0) = t\right)$$

= $\left[-\gamma_1 t \mathbb{E}\left(\sin^2(\Theta)\right) - \gamma_2 t \mathbb{E}\left(\cos^2(\Theta)\right)\right]$

Proposition

$$C_0^*(X,t) = \frac{1}{(2\pi)^{3/2}} \gamma_{\text{TC}} t e^{-t^2/2}$$
, a.e. $t \in \mathbb{R}$, where

$$\gamma_{\mathrm{TC}} = \mathbb{E}(\gamma_1 \sin^2(\Theta) + \gamma_2 \cos^2(\Theta)) = \sqrt{\gamma_1 \gamma_2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rk : if $\gamma_1 = \gamma_2$ then $\gamma_{\rm TC} = \gamma_{\rm Per} = \gamma_2$ and $\nu_X(0) \sim \mathcal{U}(S^1)$.

Theorem

For X C² stationary Gaussian standard random field

$$C_0^*(X,t) = \gamma_{\rm TC} \frac{1}{(2\pi)^{3/2}} t e^{-\frac{t^2}{2}} a.e.$$

$$C_1^*(X,t) = \sqrt{\gamma_{\rm Per}} \frac{1}{4} e^{-\frac{t^2}{2}} a.e.$$

$$C_2^*(X,t) = 1 - \Psi(t) \text{ for } \Psi(t) = \int_{-\infty}^t \frac{e^{-u^2/2}}{\sqrt{2\pi}} du$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How to see anisotropy?

First line : $\gamma_1 = \gamma_2 = 0.005$ and Second line $\gamma_1 = 0.001$, (3) (3) (3)

Ratio of anisotropy

Proposition

$$\begin{split} \min(\gamma_1, \gamma_2) &\leq \gamma_{\rm TC} \leq \gamma_{\rm Per} \leq \max(\gamma_1, \gamma_2) \text{ and } \gamma_{\rm TC} = \gamma_{\rm Per} \text{ iff } \gamma_1 = \gamma_2. \\ \text{Defining R} &= \frac{\gamma_{\rm TC}}{\gamma_{\rm Per}} \in \left[\frac{\min(\gamma_1, \gamma_2)}{\max(\gamma_1, \gamma_2)}; 1\right] \text{ and plot the} \\ \text{Almond curve of anisotropy } \{(x(t), y(t)); t \in \mathbb{R}\} \\ x(t) &= \frac{C_1^*(X, t)}{C_1^*(X, 0)} = e^{-t^2/2} \text{ and } y(t) = \frac{C_0^*(X, t)}{(C_1^*(X, 0))^2} = \frac{16}{(2\pi)^{3/2}} \operatorname{R} t e^{-t^2/2}. \\ \end{split}$$

with $C_1^*(X,0) = 4\sqrt{\gamma_{\text{Per}}}$. See also Klatt, Hörmann, Mecke (2021) for inspiration

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 $\mathrm{R}=0.8$

 $\mathrm{R}=0.9$

 $\mathrm{R}=1$

 $\mathrm{R}=0.8$

 $\mathrm{R}=0.9$

 $\mathrm{R}=1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Effective level

For $t \in \mathbb{R}$ unknown, following Di Bernardino and Duval (2020), define the effective level as

$$\hat{t} = \Psi^{-1}(1 - \hat{C}_2(X, t)),$$

Note that for the quantile $t = \Psi^{-1}(q)$ for $q \in (0,1)$ one has $C_2^*(X,t) = 1-q$ and set

$$\hat{q}=1-\hat{\mathcal{C}}_2(X,t)$$
 such that $\hat{t}=\Psi^{-1}(\hat{q}).$

We can consider $C_{j}^{*}(X, \Psi^{-1}(q)), j = 0, 1, 2.$

Effective $\gamma_{\rm Per}$ and $\gamma_{\rm TC}$

Using that

$$C_0^*(X,t) = \gamma_{\rm TC} \frac{1}{(2\pi)^{3/2}} \ t \ e^{-\frac{t^2}{2}} \ \text{and} \ C_1^*(X,t) = \sqrt{\gamma_{\rm Per}} \frac{1}{4} \ e^{-\frac{t^2}{2}},$$

define for $\hat{t} > 0$ or $\hat{a} > 1/2$

 $\hat{\gamma}_{\mathrm{TC}} = \hat{C}_0(X,t) \times (2\pi)^{3/2} \ \hat{t}^{-1} e^{\frac{\hat{t}^2}{2}} \ \text{and} \ \hat{\gamma}_{\mathrm{Per}} = \hat{C}_1(X,t)^2 \times 16 \ e^{\hat{t}^2}.$

Effective Ratio of anisotropy

We finally define

R = 1

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

 $\hat{\mathrm{R}}=0.7672$

 $\hat{\mathrm{R}}=0.9029$


```
\hat{\mathrm{R}}=1.012
```


 $\hat{\mathrm{R}}=0.7372$

 $\hat{\mathrm{R}}=0.8826$

 $\hat{\mathrm{R}}=0.9762$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusion and perspectives

Conclusion :

- New geometrical equivalent of spectral moments
- Anisotropy estimation available from one excursion set
- Extension in dimension d with mean curvature, numerical evaluation for d = 3

Perspectives :

- Second order and higher moment properties
- Control of bias induced by discrete simulation/estimation
- Extension for fractional Gaussian fields

References

- R. Adler, J. Taylor : Random fields and Geometry. Springer, NY (2007).
- J.M. Azais, M. Wschebor : Level sets and extrema of random processes and fields. *Wiley (2009)*.
- C. Berzin, A. Latour, J. Leon : Kac-Rice formulas for random fields and their applications in : random geometry, roots of random polynomials and some engineering problems. *Instituto Venezolano de Investigaciones Científicas, (2017).*
- H. Biermé, A. Desolneux : The anisotropy of 2D or 3D Gaussian random fields through their Lipschitz-Killing curvatures densities. *submitted.*
- H. Biermé, A. Desolneux : Mean Geometry of 2D random fields : level perimeter and level total curvature integrals. *Annals of Applied Probability, 2020.*
- H. Biermé, E. Di Bernardino, C. Duval, A. Estrade : Lipschitz Killing curvatures of excursion sets for 2D random fields *Electronic Journal of Statistics*, **13**, *536-581*, *(2019)*.