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Introduction to random fields

Let (Ω,A,P) be a complete probability space and d ≥ 2

Definition
A (real) random field indexed by Rd is just a collection of real random
variables X (x) : (Ω,A)→ (R,B(R)) measurable, ∀x ∈ Rd .

Exple : d = 2, X (x)(ω) = grey level of a picture at point x . In practice
data are only available on pixels S = {0, 1, . . . , n − 1}2 ⊂ R2 for an
image of size n × n.
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Introduction to random fields

Definition
The distribution of (X (x))x∈Rd is given by all its finite dimensional
distribution (fdd) ie the distribution of all real random vectors

(X (x1) . . . ,X (xk)) for k ≥ 1, x1, . . . , xk ∈ Rd .

Joint distributions are often difficult to compute !

Definition
(X (x))x∈T is a second order field if E(X (x)2) < +∞ for all x ∈ Rd .

Mean function mX : x ∈ Rd → E(X (x)) ∈ R

Covariance function
KX : (x , y) ∈ Rd × Rd → Cov(X (x),X (y)) ∈ R.
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Introduction to random fields

When mX = 0, the field X is centered. Otherwize Y = X −mX is
centered and KY = KX .

Proposition

A function K : Rd × Rd → R is a covariance function iff

1 K is symmetric

2 K is positive definite : ∀k ≥ 1, x1, . . . , xk ∈ Rd , λ1, . . . , λk ∈ R,

k∑
i,j=1

λiλjK (xi , xj) ≥ 0.
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Gaussian fields

Definition
(X (x))x∈Rd is a Gaussian field if ∀k ≥ 1, x1, . . . , xk ∈ Rd

(X (x1), . . . ,X (xk)) is a Gaussian vector of Rk ,

EQ ∀λ1, . . . , λk ∈ R, the real random variable
k∑

i=1

λiX (xi ) is a Gaussian

variable.

Proposition

When (X (x))x∈Rd is Gaussian, (X (x))x∈Rd is a second order field and its
law is determined by its mean function mX : x 7→ E(X (x)) and its
covariance function KX : (x , y) 7→ Cov(X (x),X (y)).

Theorem (Komogorov)

Let m : Rd → R and K : Rd × Rd → R, symmetric and positive definite,
then there exists a Gaussian field with mean m and covariance K .
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Stationarity

Definition
X = (X (x))x∈Rd (strongly) stationary if, ∀x0 ∈ Rd , (X (x + x0))x∈Rd has
the same law than X .

Proposition

If X = (X (x))x∈Rd is stationary and second order, ∀x0 ∈ Rd ,

mX (x) = mX

KX (x , y) = ρX (x − y) with ρX : Rd → R even s.t.

1 ρX (0) ≥ 0
2 |ρX (x)| ≤ ρX (0) ∀x ∈ Rd

3 ρX is of positive type ie
∀k ≥ 1, x1, . . . , xk ∈ Rd , λ1, . . . , λk ∈ R,

k∑
i,j=1

λiλjρX (xi − xj) ≥ 0.



default

Stationarity

Theorem (Bochner 1932)

An even continuous function ρ : Rd → R is of positive type if and only if
ρ(0) > 0 and there exists a symmetric probability measure µ on Rd such
that

ρ(x) = ρ(0)

∫
Rd

e iξ·xdµ(ξ).

In other words there exists a symmetric random vector Z on Rd such that

ρ(x) = ρ(0)E(e ix·Z ).

Rk : When ρ is the covariance of the stationary field X , µ is called the
spectral measure of X .

Definition
The field is standard if it is centered (m = 0) and unit variance
(ρ(0) = 1).
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Isotropy

Definition
X = (X (x))x∈Rd isotropic if, ∀Q rotation, (X (Qx))x∈Rd has the same
law than X .

Rk : A stationary Gaussian random field is isotropic iff ∀Q, ρ(Qx) = ρ(x)
Exple : d = 2 ρ(x) = exp(−γ1

2 x2
1 ) exp(−γ2

2 x2
2 ) for x = (x1, x2) ∈ R2 and

γ1, γ2 ∈ (0,+∞) : X isotropic iff γ1 = γ2

view 3D view 2D some level lines
n = 210 ; top γ2 = γ1 = 0.005 ; bottom γ1 = 0.001
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Smooth Gaussian stationary random fields

Let ρ : Rd → R be an even C 2k+ε function (for instance) of positive
type. Then one can find (Ω,A,P) a complete probability space and

X : Ω× Rd → R

such that X is a centered Gaussian stationary C k random field :

∀ω ∈ Ω, x ∈ Rd 7→ X (ω, x) ∈ R is C k ;(
∂
|j|
j X

)
|j|≤k

jointly Gaussian stationary with

Cov
(
∂
|j|
j X (x), ∂

|j′|
j′ X (0)

)
= (−1)|j

′|∂
|j|+|j′|
j+j′ ρ(x).

In particular Γ∇X := (−∂ijρ(0))1≤i,j≤d = −D2ρ(0) is the covariance of
the centered Gaussian vector ∇X (x) = (∂1X (x), . . . , ∂dX (x)). When X
is also isotropic Γ∇X = γ2I2 with γ2 the second spectral moment
Rk : Any stationary C 1 Gaussian random field Y may be written as

Y = m + σX ◦ Q,

with X standard with ρX = 1
σ2 ρY and Γ∇X = 1

σ2 QΓ∇YQ
T .
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Smooth Gaussian type random fields

A random field X is of Gaussian type if X = F (G) : F : R` → R and
G = (G1, . . . ,G`) is a family of i.i.d. Gaussian standard stationary random
fields

Examples

χ2(k) random field : F : x ∈ Rk → ‖x‖2

Student(k) : x = (z , y) ∈ R× Rk 7→ F (x) := z/
√
‖y‖2/k

view 3D view 2D some level lines
n = 210, γ2 = γ1 = 0.005 ; top χ2(2) bottom Student(4)
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Shot noise random fields

A (Poisson) shot noise random field is a random function X : Rd → R
given by

∀x ∈ Rd , X (x) =
∑
i∈I

gmi (x − xi ), where

{xi}i∈I is a Poisson point process of intensity λ > 0 in Rd ,

{mi}i∈I are independent « marks » with distribution F (dm) on R`,
and independent of {xi}i∈I .
The functions gm are real-valued deterministic functions, called spot
functions, such that∫

R`

∫
Rd

|gm(y)| dy F (dm) < +∞.

Here we mainly consider, for sake of simplicity, ` = 1 with a single
L1(Rd) function g randomly weighted or dilated : M ∼ F is a probability
measure on R or (0,+∞) and

gm(y) = mg(y) or gm(y) = g(y/m).
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Shot noise random fields

It is therefore a stationary and integrable field with

E(X (x)) = λ

∫
R`

∫
Rd

gm(y) dy F (dm).

The characteristic function of X (x) is given by

E
(
e itX (x)

)
= exp

(
λ

∫
R`×Rd

[e i [tgm(y)] − 1]F (dm)dy

)
.

When g is smooth and |j| ≤ k + 1∫
R`

∫
Rd

|∂|j|j gm(y)| dy F (dm) < +∞

X is C k and we have also access to joint law of (∂jX (x))x∈Rd ,|j|≤k via
characteristic function. In particular the joint characteristic function of
X (x) and ∂jX (x) is

ϕ(t, s) = E
(
e itX (x)+is∂jX (x)

)
= exp

(
λ

∫∫
[e itgm(y)+is∂jgm(y) − 1]F (dm) dy

)
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Statistical properties of shot noise random fields

If
∫
R`
∫
Rd gm(y)2dyF (dm) < +∞, then X has second-order

moments

Cov(X (z),X (z + x)) = E(X (z)X (z + x))− E(X (z))E(X (z + x))

= λ

∫
R`

∫
Rd

gm(y)gm(y − x) dy F (dm)

= λρ(x).

In particular

Var(X (x)) = Var(X (0)) = λ

∫
R`

∫
Rd

gm(y)2 dy F (dm).

When moreover the intensity λ goes to +∞, the normalized random
field

Z (x) =
X (x)− E(X (x))√

λ

converges (f.d.d.) to a stationary centered Gaussian field with
covariance ρ.
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Example 1 : disk with random radius

Let d = 2, g = 1D , U = (0,T )2 and consider random disk of radius
m = m1 or m = m2 with 0 < m1 < m2 (each with probability 1/2) with
intensity λ > 0

The number of centers in (−m2,T + m2)2 is a Poisson random
variable of parameter λ(T + 2m2)2 −→ n

The centers x1, . . . , xn are thrown uniformly, independently on
(−m2,T + m2)2

The radius R1, . . . ,Rn are attached to each center by flipping a coin
to choose between m1 or m2.



default

Excursion set

We consider the excursion set or the level set of level t ∈ R of X in U
defined by

EX (t) ∩ U := {x ∈ U;X (x) ≥ t} with EX (t) = {X ≥ t}.

view 3D view 2D some level lines

t = 0.5 t = 1.5 t = 2.5



default

Example 2 : Gaussian kernel

Let us choose g(x) = e−
‖x‖2

2 instead of 1D .

view 3D view 2D some level lines

t = 0.5 t = 1 t = 1.5
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Main questions

What can be said about "mean" geometry of excursion sets ? Area ?
Perimeter ? Euler Characteristic=# connected components – # holes ?

Known results for

Boolean model : Mecke (2001), Mecke, Wagner (1991)

Smooth Gaussian random fields : Adler (2000), Adler, Taylor
(2007), Azaïs, Wschebor (2009), ...

High levels : Adler, Samorodnitsky, Taylor (2010,2013),...

Two different frameworks

1 Elementary : g is piecewize constant with compact support

2 Smooth : g is at least C 3
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Outlines

1 Introduction to random fields
2 Geometry of excursion sets
3 Case of elementary functions and shot noise fields
4 Case of smooth functions and random fields
5 Isotropic smooth random fields
6 Anisotropic Gaussian smooth random fields
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Curvature measures

Let E ⊂ R2 be a "nice set". Its curvature measures Φj(E , ·), for
j = 0, 1, 2, are defined for any Borel set U ⊂ R2 by

Φ2(E ,U) = |E ∩ U|, occupied area

Φ1(E ,U) = 1
2 H

1(∂E ∩ U) = 1
2Per(E ,U), regularity property

Φ0(E ,U) = 1
2πTC(∂E ,U), connectivity property

where H1(∂E ∩ U) is the lenght and TC(∂E ,U) the total curvature of
the positively oriented curve ∂E in U.

For E a compact or convex set and E ⊂ U also related to Minkowski or
intrinsic volumes, widely used in mathematical morphology, convex and
integral geometry : Hadwiger (1957), Federer (1959), Santaló (1976),
Schneider & Weil (2008),...
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Piecewise regular curve

A Jordan curve Γ ⊂ R2 is piecewise regular if Γ = RΓ ∪ CΓ with
#CΓ < +∞

for x ∈ RΓ one has x = γ(0) for some s ∈ (−ε, ε) with
γ : (−ε, ε)→ Γ C 2, arc length parametrized. Then,
H1(γ(−ε, ε)) = 2ε, νΓ(x) = γ′(0)⊥.
The signed curvature κΓ(x) of Γ at x is

κΓ(x) = 〈γ′′(0), γ′(0)⊥〉.

for x ∈ CΓ one has x = γ(0) with γ : (−ε, ε)→ Γ continuous and
C 2 on (−ε, ε) r {0} s.t. γ′ admits limits γ′(0−) ∈ S1 and
γ′(0+) ∈ S1 at 0. Then, H1(γ(−ε, ε)) = 2ε.
The turning angle at a corner point x = γ(0) ∈ CΓ is the angle
αΓ(x) ∈ (−π, π) between the tangent “before” and the one “after” x

αΓ(x) = Arg γ′(0+)−Arg γ′(0−) ∈ (−π, π).
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Total curvature

The total curvature of Γ in U is defined as

TC(Γ,U) :=

∫
RΓ∩U

κΓ(x)H1(dx) +
∑

x∈CΓ∩U

αΓ(x).

D = {x ; ‖x‖ ≤ R} C = {x ; ‖x‖∞ ≤ R}

κ∂D(x) = 1/R & C∂D(x) = ∅ κ∂C (x) = 0 & α∂D(x) = π/2
TC(∂D,U) = 1/R × 2πR = 2π TC(∂C ,U) = 4× π/2 = 2π
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Total curvature : example

A ∂A = Γ1 ∪ Γ2

∀x ∈ R∂A, κ∂A(x) = 0

#C∂A = 12 and α∂A(x) = ±π/2
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Total curvature : example

?
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Total curvature : example

TC(∂A,U) = TC(Γ1,U) + TC(Γ2,U)

= (6× π/2 + 2× (−π/2)) + 4× (−π/2) = 0
Per(A,U) = 380
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Total curvature and Euler characteristic

Theorem (Gauss-Bonnet)

Let E ⊂ U be a regular region ie E =
o

E such that ∂E = ∪ni=1Γi is a finite
union of disjoint positively oriented Jordan piecewise regular curves. then

TC(∂E ,U) :=
n∑

i=1

TC(Γi ,U) = 2πχ(E ) (= 2πΦ0(E ,U)) ,

where χ(E ) ∈ Z is the Euler characteristic of E .

χ(E ) = #connected components−# holes.
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Geometry of excursion sets

Let X = (X (x))x∈R2 be a stationary "nice" random field and U ⊂ R2 a
bounded open rectangle. For t ∈ R, we consider for the excursion set of
level t

EX (t) := {x ∈ R2;X (x) ≥ t}.
the LK curvatures of the excursion set EX (t) within U are classicaly
defined as

Cj(X , t,U) := Φj(EX (t) ∩ U,U), for j = 0, 1, 2.

and, assuming the limits exist, the associated LK densities are

C∗j (X , t) := lim
U↗R2

E[Cj(X , t,U)]

|U|
, for j = 0, 1, 2,

where lim
U↗R2

stands for the limit along any sequence of bounded

rectangles that grows to R2. Note that for j = 2, by stationarity,

E[C2(X , t,U)] = |EX (t) ∩ U| = P(X (0) ≥ t)|U|, s.t.

C∗2 (X , t) = P(X (0) ≥ t)
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LK densities

Moreover

Cj(X , t,U) = Φj(EX (t) ∩ U,U) = Φj(EX (t),U) + Φj(EX (t) ∩ U, ∂U).

Then Φj (EX (t),U)
|U| is an unbiased, strongly consistent estimator of C∗j (X , t)

E [Φj(EX (t),U)]

|U|
= C∗j (X , t) with lim

U↗R2

Φj(EX (t),U)

|U|
= C∗j (X , t) a.s..
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Weak framework

Let f : R2 → R be a "nice" function and note

Ef (t) = {x ∈ R2; f (x) ≥ t}.

Remark that when t < minU f or t > maxU f , then ∂Ef (t) ∩ U = ∅. We
consider for any h bounded continuous function on R

Lf Φ1(h,U) :=

∫
R
h(t)Φ1(Ef (t),U)dt =

1
2

∫
R
h(t)H1(∂Ef (t)∩U)dt;

Lf Φ0(h,U) :=

∫
R
h(t)Φ0(Ef (t),U)dt =

1
2π

∫
R
h(t)TC(∂Ef (t),U)dt.
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The case of elementary functions

Definition
The function f is said elementary function if f is a piecewise constant
function taking a locally finite number of values and if Sf the
discontinuity set of f can be decomposed as

Sf = ∪
t∈R

∂Ef (t) = Rf ∪ Cf ∪ If , where :

x ∈ Rf x ∈ Cf x ∈ If
From left to right : a regular point, a corner point and an intersection point
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The case of elementary functions

In this case writing H(t) =
∫ t

0 h(s)ds we obtain

Lf Φ1(h,U) =
1
2

∫
Rf∩U

[H(f +(x))− H(f −(x))]H1(dx)

Lf Φ0(h,U) =
1
2π

∫
Rf∩U

[H(f +(x))− H(f −(x))]κf (x)H1(dx)

+
1
2π

∑
x∈Cf∩U

[H(f +(x))− H(f −(x))]αf (x)

+
1
2π

∑
x∈If∩U

[H(f +(x)) + H(f −(x))− H(f +
− (x))− H(f −+ (x))]βf (x).
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Elementary Shot Noise fields

Consider
X (x) =

∑
i

gmi (x − xi )

For gm elementary with Sgm = Rgm ∪ Cgm ,+ technical assumptions, the
shot noise field X is elementary with

RX = ∪iτxiRgmi
r
(
∪i 6=jτxiRgmi

∩ τxjRgmj

)
, and for

x ∈ τxiRgmi
∩RX

X±(x) =
∑

j 6=i gmj (x − xj) + g±mi
(x − xi )

CX = ∪iτxiCgmi
, and for x ∈ τxiCgmi

∩RX

X±(x) =
∑

j 6=i gmj (x − xj) + g±mi
(x − xi )

IX =
(
∪i 6=jτxiRgmi

∩ τxjRgmj

)
and for x ∈ τxiRgmi

∩ τxjRgmj

X±(x) =
∑

k 6=i,j gmk
(x − xk) + g±mi

(x − xi ) + g±mj
(x − xj) and

X+
− (x) =

∑
k 6=i,j gmk

(x − xk) + g+
mi

(x − xi ) + g−mj
(x − xj)

X−+ (x) =
∑

k 6=i,j gmk
(x − xk) + g−mi

(x − xi ) + g+
mj

(x − xj)
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Weak formula for Shot Noise fields

Using Slivnyak-Mecke formula, Fubini and stationarity

E(LXΦ1(h,U)) = λ|U|
∫
R`

LgmΦ1(hXΦ(0),R2)F (dm)

E(LXΦ0(h,U)) = λ|U|
∫
R`

(
LgmΦ0(hXΦ(0),R2) + λI (hXΦ(0),m)

)
F (dm),

where
hXΦ(0)(s) = E(h(XΦ(0) + s)),

and

I (hXΦ(0),m) =
1
4π

∫
R`

∫
R2

∑
z∈τxRgm∩Rgm′

dS1(νgm(z − x), νgm′ (z))

×
∫ g+

m′ (z)

g−
m′ (z)

(
hXΦ(0)(s + g+

m (z − x))− hXΦ(0)(s + g−m (z − x))
)
dsdxF (dm′).
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LK densities for Shot Noise fields

Considering g = 1D and gm = 1Dm so that

Φ1(Egm(t),R2) = 1
2Per(Egm(t),R2) = πm10<t≤1,

Φ0(Egm(t),R2) = 10<t≤1

and according to the kinematic formula we have∫
R2

∑
z∈τx∂Dm∩∂Dm′

dS1(νgm(z − x), νgm′ (z))dx = 2πm × 2πm′.

Introducing p =
∫
R+ 2πmF (dm)

E(LXΦ1(h,U)) =
λ

2
|U|
∫ 1

0
hXΦ(0)(s)pds

E(LXΦ0(h,U)) = λ|U|
∫ 1

0

(
hXΦ(0)(s) +

λ

4π
p2 (hXΦ(0)(s + 1)− hXΦ(0)(s)

))
ds.
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Application to Shot Noise

Since XΦ(0) ∼ P(λa) with a =
∫
R+ πm

2F (dm), we get for s ∈ [0, 1)

hXΦ(0)(s) = E(h(XΦ(0) + s))

=
+∞∑
k=0

h(k + s)e−λa
(λa)k

k!
=

+∞∑
k=0

h(k + s)e−λa
(λa)bk+sc

bk + sc!

It follows that∫
R
h(t)C∗1 (X , t)dt =

E(LXΦ1(h,U))

|U|

=
λ

2

∫ 1

0
hXΦ(0)(s)pds

=
λ

2

∫ +∞

0
h(t)pe−λa

(λa)btc

btc!
dt

Hence for a.e. t ≥ 0,

C∗1 (X , t) = e−λa
(λa)btc

btc!
λp

2
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Illustration

In a similar way, by continuity, for t ∈ R+ \ Z+, it holds that

C∗0 (t) = e−λā
(λā)btc

btc!
λ

(
1− λ p̄

2

4π
+ btc p̄

2

4πā

)
,

C∗1 (t) = e−λā
(λā)btc

btc!
λp̄

2

C∗2 (t) = e−λā
∑
k>t

(λā)k

k!
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random disks of radius R = 50 or R = 100 (each with probability 0.5).
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Illustration

Critical levels
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Extension

Taking Y = X (1) − X (2) where X (1),X (2) are iid Shot noise of disks we
have excursion sets that are not positive reach set but still elementary sets
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LK densities

For t ∈ R \ Z, it holds that for ν = 2λ and In(x) =
∑∞

m=0
(x/2)2m+n

m!Γ(m+n+1) the
modified Bessel function of the first kind

C∗0 (Y , t) =
ν

2
e−νā

[
(I|btc| − I|btc+1|)(νā)

+
νp̄2

8π
(I|btc−1| + I|btc| − I|btc+1| − I|btc+2|)(νā)

]
,

C∗1 (Y , t) =
νp̄

4
e−νā (I|btc| + I|btc+1|)(νā)

C∗2 (Y , t) = e−νā
∑
k>t

I|k|(νā),
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Outlines

1 Introduction to random fields
2 Geometry of excursion sets
3 Case of elementary functions and shot noise fields
4 Case of smooth functions and random fields
5 Isotropic smooth random fields
6 Anisotropic Gaussian smooth random fields
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Lecture 2 :

1 Case of smooth functions and random fields

1 Geometry of smooth excursion sets
2 LK densities for smooth random fields

2 Isotropic smooth random fields

1 LK densities for isotropic fields
2 Gaussian and related smooth isotropic fields
3 Smooth isotropic shot noise fields

3 Anisotropic Gaussian smooth random fields

1 LK densities for anisotropic Gaussian
2 Geometrical spectral moments and ratio of anisotropy
3 Effective level and effective ratio of anisotropy
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Smooth Excursion sets

Assume that f : R2 → R is C 2. For t ∈ R, we consider the excursion set
of level t

Ef (t) := {x ∈ R2; f (x) ≥ t}.

We assume it is observed through U a bounded open rectangle.

Credit : BrainMapping : an encyclopedic reference- Topological Inference
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Smooth excursion sets and implicit planar curves

Assume f : R2 → R is C 2. Since f is continuous, we have for t ∈ R

∂Ef (t) = {x ∈ R2; f (x) = t},

corresponding to a level line of f . Hence for t ∈ R, if x ∈ ∂Ef (t) with
∇f (x) 6= 0, the unit vector νf (x) = ∇f (x)

‖∇f (x)‖ is the normal vector of
∂Ef (t) at x with

Dνf (x) =
1

‖∇f (x)‖
[
I2 − νf (x)νf (x)T

]
D2f (x),

where D2f (x) is the Hessian matrix. Moreover the signed curvature at
x may be written as

κf (x) = −〈νf (x)⊥,Dνf (x)νf (x)⊥〉 = − 1
‖∇f (x)‖

〈νf (x)⊥,D2f (x)νf (x)⊥〉.



default

Coarea formula

By Morse-Sard theorem, the image by f of the set of critical values of f
has measure 0 in R. For a.e. level t ∈ R and U open bounded,

Φ1(Ef (t),U) =
1
2

∫
∂Ef (t)∩U

1H1(dx)

Φ0(Ef (t),U) =
1
2π

∫
∂Ef (t)∩U

κf (x)H1(dx).

The coarea formula states that, for any borel function g : R2 → R s.t∫
U
|g(x)|‖∇f (x)‖ dx < +∞,∫

R

∫
∂Ef (t)∩U

g(x)H1(dx) dt =

∫
U

g(x)‖∇f (x)‖ dx .

Let us choose h : R→ R a bounded continuous function (test function)
such that multiplying g(x) by h(f (x)) we get∫

R
h(t)

∫
∂Ef (t)∩U

g(x)H1(dx) dt =

∫
U

h(f (x))g(x)‖∇f (x)‖ dx .
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Weak formula for Φ1 and Φ0

Let h : R→ R be a bounded continuous function and∫
U
|g(x)|‖∇f (x)‖ dx < +∞, recall the Coarea formula :∫

R
h(t)

∫
∂Ef (t)∩U

g(x)H1(dx) dt =

∫
U

h(f (x))g(x)‖∇f (x)‖ dx .

Coarea formula with g(x) = 1 :∫
R
h(t)Φ1(Ef (t),U)dt =

1
2

∫
U

h(f (x))‖∇f (x)‖ dx .

Coarea formula with g(x) = κf (x)1‖∇f (x)‖>0 for

κf (x) = − 1
‖∇f (x)‖

〈νf (x)⊥,D2f (x)νf (x)⊥〉, and νf (x) =
∇f (x)

‖∇f (x)‖
,

∫
R
h(t)Φ0(Ef (t),U)dt = − 1

2π

∫
U

h(f (x))〈νf (x)⊥,D2f (x)νf (x)⊥〉1‖∇f (x)‖>0 dx .
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Mean geometry for excursion sets

Let X = (X (x))x∈R2 be a stationary real random field a.s. C 2 with X (0),
∇X (0) and D2X (0) L1 and P(‖∇X (0)‖ = 0) = 0. We consider the
excursion set of level t ∈ R

EX (t) := {x ∈ R2;X (x) ≥ t}.

First recall that by stationarity

E[Φ2(EX (t),U)] = E
(∫

U

1X (x)≥tdx

)
= |U|P(X (0) ≥ t).

Moreover, taking expectation it follows that for all h bounded
continuous, writing ∇X (0) = ‖∇X (0)‖νX (0) a.s.,∫
R
h(t)E[Φ1(EX (t),U)]dt = |U| × 1

2
E (h(X (0))‖∇X (0)‖)∫

R
h(t)E[Φ0(EX (t),U)]dt = |U| × −1

2π
E
(
h(X (0))〈νX (0)⊥,D2X (0)νX (0)⊥〉

)
,
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Lipschitz-Killing (LK) densities

We therefore consider LK densities :

C∗j (X , t) =
1
|U|

E[Φj(EX (t),U)].

∫
R
h(t)C∗1 (X , t)dt =

1
2
E (h(X (0))‖∇X (0)‖) ;∫

R
h(t)C∗0 (X , t)dt =

−1
2π

E
(
h(X (0))〈νX (0)⊥,D2X (0)νX (0)⊥〉

)
.

Note that
∫
R C
∗
1 (X , t)dt = 1

2E (‖∇X (0)‖) (total variation)
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Lipschitz-Killing (LK) densities

Let us remark that for any rotation Q,

C∗j

(
X ◦ QT −m

σ
, t

)
= C∗j (X , σt + m).

such that for a second order random field X , we can assume that it is
standard with Γ∇X diagonal matrix

E(X (0)) = 0

Var(X (0)) = 1

Cov(Xi (0),Xj(0)) = γiδi,j

Here and in the sequel we write Xi = ∂iX and Xij = ∂ijX . Introducing Θ
such that νX = (cos(Θ), sin(Θ)) we also have

E
(
h(X (0))〈νX (0)⊥,D2X (0)νX (0)⊥〉

)
= E

(
h(X (0))

[
X11(0) sin2(Θ) + X22(0) cos2(Θ)− X12(0) sin(2Θ)

])



default

LK densities at a fixed level

When X (0) admits pX (0) for density one has for a.e. t

C∗1 (X , t) = 1
2E (‖∇X (0)‖|X (0) = t) pX (0)(t)

C∗0 (X , t) = − 1
2πE

(
〈νX (0)⊥,D2X (0)νX (0)⊥〉|X (0) = t

)
pX (0)(t).

Comments

If one knows that t 7→ C∗1 (X , t) or t 7→ C∗0 (X , t) are continuous
then a.e. is enough !

In Berzin, Latour, Leon (2017) general assumptions to ensure that
t 7→ C∗1 (X , t) is continuous ;

For a fixed level t ∈ R one has to ensure that it is not a critical level

P
(
∃x ∈ R2;X (x) = t,∇X (x) = 0

)
= 0.

Bulinskaya’s Lemma holds for instance when X is C 3 (see also
D’Armenato, Azais, Leon, 2023 for weakest assumptions)
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Outlines

1 Introduction to random fields
2 Geometry of excursion sets
3 Case of elementary functions and shot noise fields
4 Case of smooth functions and random fields
5 Isotropic smooth random fields
6 Anisotropic Gaussian smooth random fields
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LK densities for isotropic fields

When X is also isotropic, let introduce

J = ‖∇X (0)‖e iΘ and K =
X22(0)− X11(0) + 2iX12(0)

4
.

The rotation invariance implies that for any θ ∈ [0, 2π),

(X (0), J,K )
d
= (X (0), e iθJ, e2iθK ). (1)

Writing ‖∇X (0)‖ = 1
4

∫ 2π
0 |<(Je−iθ)|dθ we get

E (h(X (0))‖∇X (0)‖) =
π

2
E (h(X (0))|X1(0)|) .

Moreover,

E
(
h(X (0))〈νX (0)⊥,D2X (0)νX (0)⊥〉

)
= α0(h) + 2<α2(h),

with

α0(h) = E (h(X (0))X11(0)) , and α2(h) = E
(
h(X (0))Ke2iΘ) .
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LK densities for isotropic fields

Noting that for all k 6= 2

E
(
h(X (0))Ke ikΘ

)
= 0,

it follows that for any continuous bounded 2π periodic function

E (h(X (0))Kg(Θ)) = c2(g)E
(
h(X (0))Ke2iΘ) ,

with

c2(g) =
1
2π

∫ 2π

0
e−2iθg(θ)dθ.

In particular, for g(θ) = sin(2θ) we obtain

2<α2(h) = −2E (h(X (0))X12(0) sin(2Θ)) .
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Gaussian case

For X a stationary isotropic standard C 2 Gaussian random field we note
ρ(x) = Cov(X (x),X (0)), and the second spectral moment

γ2 = −∂2
kρ(0) = −Cov(X (0),Xkk(0)) = Var(Xk(0)).

By stationarity Cov(X (0),Xk(0)) = Cov(Xk(0),Xij(0)) = 0 and ∇X (0) is
independent of (X (0),D2X (0))

E (h(X (0))|X1(0)|) = E (h(X (0)))E (|X1(0)|) =

√
2γ2

π
E (h(X (0))) ;

α0(h) = E (h(X (0))X11(0)) = E (h(X (0))E (X11(0)|X (0)))

=
−γ2

σ2 E (h(X (0))X (0)) ;

2<α2(h) = −E (h(X (0))X12(0) sin(2Θ)) = E (h(X (0))X12(0))E (sin(2Θ))

= 0.
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Gaussian case

This yields to for a.e. t ∈ R

C∗0 (X , t) =
1

(
√
2π)3

γ2 t e
− t2

2 and C∗1 (X , t) =
1
4
γ

1/2
2 e−

t2
2 .

ρ(x) = e−
γ2
2 ‖x‖

2
, for γ2 = 0.02 in a domain of size 210 × 210 pixels.
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Statistical inference

In practise, it is often computed for j = 0, 1, 2,

Cj(X , t,U) := Φj(EX (t) ∩ U,U) (empirically accessible)

Recall that

Cj(X , t,U) = Φj(EX (t),U) + Φj(EX (t) ∩ U, ∂U),

with E[Φj(EX (t),U)] = |U| × C∗j (X , t).
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Kinematic formula

For isotropic random fields, EX (t) is an isotropic stationary closed
random set
By kinematic formula (see Schneider, Weyl (2008)) under good
assumptions, one has

E[C0(X , t,U)] = C∗0 (X , t)|U|+ 1
π
C∗1 (X , t)H1(∂U) + C∗2 (X , t),

E[C1(X , t,U)] = C∗1 (X , t)|U|+ 1
2
C∗2 (X , t)H1(∂U),

E[C2(X , t,U)] = C∗2 (X , t)|U|
Hence unbiased estimators for C∗j (X , t) may be obtained as

Ĉ2(X , t) =
1
|U|

C2(X , t,U),

Ĉ1(X , t) =
1
|U|

C1(X , t,U)−H
1(∂U)

2|U|
Ĉ2(X , t),

Ĉ0(X , t) =
1
|U|

C0(X , t,U)−H
1(∂U)

π|U|
Ĉ1(X , t)− 1

|U|
Ĉ2(X , t).
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Central limit theorems

Under good assumptions one can get

1√
|U|

(
Cj(X , t,U)− E(Cj(X , t,U)

)
−→
U↗R2

N (0, σ2
j (t)),

leading to √
|U|
(
Ĉj(X , t)− C∗j (X , t)

)
−→
U↗R2

N (0, σ2
j (t)).

Some Ref on CLT : Spodarev (2012), Estrade, Leoń (2016), Müller (2017),
Kratz Vadlamani (2018), Reddy et al (2018), Berzin (2021)...
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Gaussian Kinematic formula

For Gaussian type random fields, X = F (G ) with F : R` → R and
G = (G1, . . . ,G`) with G1, . . . ,G` iid smooth standard Gaussian field
with Var(∇Gi ) = Γ∇ the Gaussian kinematic formula (see Adler, Taylor
(2007)) states under good assumptions,

E[L∇0 (X , t,U)] =
1
2π
M2(X , t)L∇2 (U) +

1√
2π
M1(X , t)L∇1 (U)

+M0(X , t)L∇0 (U),

E[L∇1 (X , t,U)] =
1
2

√
π

2
M1(X , t)L∇2 (U) +M0(X , t)L∇1 (U),

E[L∇2 (X , t,U)] =M0(X , t)L∇2 (U)

with

P (G (0) ∈ Tube(F , ρ)) =M0(X , t)+ρM1(X , t)+
1
2
ρ2M2(X , t)+O(ρ3),

and
Tube(F , ρ) := {g ∈ R`; dist

(
g ,F−1([t,+∞))

)
≤ ρ}.
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(Gaussian) Kinematic formula

For isotropic fields Γ∇ = γ2I2 and

E[L∇j (X , t,U)] = γ
j/2
2 Cj(X , t,U).

It follows that

C∗0 (X , t) =
γ2

2π
M2(X , t)

C∗1 (X , t) =
1
2

√
π

2
√
γ2M1(X , t)

C∗2 (X , t) =M0(X , t)

Remark that for X standard Gaussian, k = 1, G = X and F = Id , one has

P (G (0) ∈ Tube(F , ρ)) = 1−Ψ(t − ρ),

M0(X , t) = 1−Ψ(t),M1(X , t) = Ψ′(t),M2(X , t) = −Ψ′′(t)
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Chi2 case

For k ≥ 1, Zk = G 2
1 + . . .+ G 2

k and normalized field

Z̃k(x) :=
1√
2k

(Zk(x)− k), x ∈ R2.

Then, for all t > −
√

k/2, C∗j (Z̃k , t) = C∗j (Zk , k + t
√
2k) and

C∗0 (Zk , t) =
γ2

π2k/2Γ(k/2)
t(k−2)/2 (t + 1− k) exp

(
− t

2

)
,

C∗1 (Zk , t) =

√
πγ2

2(k+1)/2Γ(k/2)
t(k−1)/2 exp

(
− t

2

)
,

C∗2 (Zk , t) =

∫ +∞

t

1
2k/2Γ(k/2)

u(k−2)/2exp
(
−u

2

)
du,
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Chi2 case

Z̃k for k = 2 and for iid standard G1, . . . ,Gk with covariance function
ρ(x) = e−

γ2
2 ‖x‖

2
, for γ2 = 0.02 in a domain of size 210 × 210 pixels.
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Student case

For k ≥ 3, Tk = Gk+1/
√

Zk/k and normalized field

T̃k(x) :=
√

(k − 2)/kTk(x), x ∈ R2.

Then, C∗j (T̃k , t) = C∗j (Tk , t
√

k/(k − 2))

C∗0 (T̃k , t) =
γ2(k − 1)

4π
t√
kπ

Γ
(
k−1

2

)
Γ
(
k
2

) (
1 +

t2

k

)− k−1
2

,

C∗1 (T̃k , t) =

√
γ2

4

(
1 +

t2

k

)− k−1
2

,

C∗2 (T̃k , t) =

∫ +∞

t

1√
kπ

Γ
(
k+1
2

)
Γ
(
k
2

) (
1 +

u2

k

)− k+1
2

du.
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Student case
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Spectral moment estimate

Using the fact that γ2 = 2π
M2(X ,t)C

∗
0 (X , t) we can estimate it from a

single excursion estimating first k using

k̂ = argmink |Ĉ2(X , t)− C∗2 (X , k , t)|

and then plugging

γ̂2 =
2π

M2(X , k̂ , t)
Ĉ0(X , t)
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Shot noise random fields

Let X be a smooth (Poisson) shot noise random field given by

∀x ∈ Rd , X (x) =
∑
i∈I

gmi (x − xi ), where

{xi}i∈I is a Poisson point process of intensity λ > 0 in R2,

{mi}i∈I are independent « marks » with distribution F (dm) on R`,
and independent of {xi}i∈I .

The functions gm are C 3 with for |j| ≤ 3∫
R`

∫
R2
|∂|j|j gm(y)|dyF (dm) < +∞



default

Shot noise fields

Recall that the characteristic function of X (x) is given by

E
(
e iξX (x)

)
= exp

(
λ

∫
R`×R2

[e i [ξgm(y)] − 1]F (dm)dy

)
.

When g is smooth, we have also access to joint law of
(X (x),∇X (x),D2X (x)) via characteristic function and similar integral
expression. In particular the joint characteristic function of X (x) and
∂1X (x) is

ϕ(ξ, s) = E
(
e iξX (x)+is∂1X (x)

)
= exp

(
λ

∫∫
[e iξgm(y)+is∂1gm(y) − 1]F (dm) dy

)



default

Isotropic smooth Shot noise fields

The main idea is therefore to take hξ(t) = e itξ to compute
FC∗j (ξ) =

∫
R e itξC∗j (X , t)dt. We obtain integral formulas :

FC∗1 (ξ) =
1
2

∫ +∞

0

ϕ(ξ, s)

s
S1(ξ, s)ds.

FC∗0 (ξ) = S0(ξ)ϕ(ξ, 0) +

∫ +∞

0

ϕ(ξ, s)

s
S2(ξ, s)ds,

with

S1(ξ) = −iλ
∫
R`

∫
R2
∂1gm(y)e i [ξgm(y)+s∂1gm(y)] dy F (dm)

S0(ξ) = − λ

2π

∫
R`

∫
R2
∂2

1gm(y)e iξgm(y) dy F (dm)

S2(ξ, s) =
λ

2π

∫
R`

∫
R2

[∂2
2gm(y)− ∂2

1gm(y)]e i [ξgm(y)+s∂1gm(y)] dy F (dm)



default

Shot noise Gaussian examples

We choose gm(y) = me−
‖y‖2

2σ2 for m ∈ R and with F (dm) distribution of M

Top : M ∼ E(µ), we find ϕ(t) =
(

µ
µ−it

)2πλσ2

and X (x) ∼ γ(µ, 2πλσ2) ;

Bottom : M ∼ L(µ), ϕ(t) =
(

µ2

µ2+t2

)πλσ2

and X (x) ∼ GSL(µ, πλσ2).
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Outlines

1 Introduction to random fields
2 Geometry of excursion sets
3 Case of elementary functions and shot noise fields
4 Case of smooth functions and random fields
5 Isotropic smooth random fields
6 Anisotropic Gaussian smooth random fields
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Anisotropic smooth Gaussian fields

Let X = (X (x))x∈R2 be a C 2 stationary Gaussian random field. We
denote as usual EX (t) the excursion set of level t ∈ R
Consider for instance the covariance function

ρ(x) = e−
γ1
2 x2

1 e−
γ2
2 x2

2 .

γ1 = γ2 = 0.005 t = 0 t = 1 t = 1.96

γ1 = 0.002



default

Lipschitz-Killing (LK) densities

When X (0) admits a density, recall our general formulas for a.e. t

C∗1 (X , t) = 1
2E (‖∇X (0)‖|X (0) = t) pX (0)(t)

C∗0 (X , t) = − 1
2πE

(
〈νX (0)⊥,D2X (0)νX (0)⊥〉|X (0) = t

)
pX (0)(t).

Assume that X is standard and Γ∇X = diag(γ1, γ2) is diagonal
Then X1(0) and X2(0) are independent and X12(0) is also independent
from X (0), and recall that ∇X (0) is independent from X (0) and
D2X (0) with

E (Xii (0)|X (0) = t) = −γi t.



default

Geometrical spectral moment

Writing eθ = (cos(θ), sin(θ)), we use

E(‖∇X (0)‖) =
1
4

∫ 2π

0
E(|〈∇X (0), eθ〉|)dθ,

with
〈∇X (0), eθ〉 = X1(0) cos(θ) + X2(0) sin(θ),

〈∇X (0), eθ〉 ∼
√
γ1 cos2(θ) + γ2 sin2(θ)N (0, 1) with

E(|N (0, 1)|) =
√

2
π .

Proposition

C∗1 (X , t) = 1
4
√
γPere

−t2/2, a.e. t ∈ R, where

γPer =

(
1
2π

∫ 2π

0

√
γ1 cos2(θ) + γ2 sin2(θ)dθ

)2

.



default

Geometrical spectral moment

Let νX (0) = (cos(Θ), sin(Θ)) with Θ independent from X (0), D2X (0),

E
([
X11(0) sin2(Θ) + X22(0) cos2(Θ)− X12(0) sin(2Θ)

]
|X (0) = t

)
=

[
−γ1tE

(
sin2(Θ)

)
− γ2tE

(
cos2(Θ)

)]

Proposition

C∗0 (X , t) = 1
(2π)3/2

γTCte
−t2/2, a.e. t ∈ R, where

γTC = E(γ1 sin2(Θ) + γ2 cos2(Θ)) =
√
γ1γ2.

Rk : if γ1 = γ2 then γTC = γPer = γ2 and νX (0) ∼ U(S1).



default

Gaussian Lipschitz-Killing (LK) densities

Theorem
For X C 2 stationary Gaussian standard random field

C∗0 (X , t) = γTC
1

(2π)3/2 t e−
t2
2 a.e.

C∗1 (X , t) =
√
γPer

1
4
e−

t2
2 a.e.

C∗2 (X , t) = 1−Ψ(t) for Ψ(t) =

∫ t

−∞

e−u
2/2

√
2π

du



default

How to see anisotropy ?

C∗0 C∗1 C∗2

First line : γ1 = γ2 = 0.005 and Second line γ1 = 0.001



default

Ratio of anisotropy

Proposition

min(γ1, γ2) ≤ γTC ≤ γPer ≤ max(γ1, γ2) and γTC = γPer iff γ1 = γ2.

Defining R = γTC
γPer
∈
[

min(γ1,γ2)
max(γ1,γ2) ; 1

]
and plot the

Almond curve of anisotropy {(x(t), y(t)); t ∈ R}

x(t) =
C∗1 (X , t)

C∗1 (X , 0)
= e−t

2/2 and y(t) =
C∗0 (X , t)

(C∗1 (X , 0))2 =
16

(2π)3/2 R te−t
2/2.

with C∗1 (X , 0) = 4
√
γPer. See also Klatt, Hörmann, Mecke (2021) for

inspiration



default

Is it anisotropic ?

A = 0.1651

Per = 0.0182


TC = 8.25 e-04

A = 0.1652

Per = 0.0187


TC = 7.36 e-04



default

Is it anisotropic ?



default

Is it anisotropic ?

R = 0.8 R = 1 R = 0.9

R = 0.9 R = 0.8 R = 1



default

Effective level

For t ∈ R unknown, following Di Bernardino and Duval (2020), define
the effective level as

t̂ = Ψ−1(1− Ĉ2(X , t)),

Note that for the quantile t = Ψ−1(q) for q ∈ (0, 1) one has
C∗2 (X , t) = 1− q and set

q̂ = 1− Ĉ2(X , t) such that t̂ = Ψ−1(q̂).

We can consider C∗j (X ,Ψ−1(q)), j = 0, 1, 2.

C∗0 ◦Ψ−1 C∗1 ◦Ψ−1 C∗2 ◦Ψ−1



default

Effective γPer and γTC

Using that

C∗0 (X , t) = γTC
1

(2π)3/2 t e−
t2
2 and C∗1 (X , t) =

√
γPer

1
4
e−

t2
2 ,

define for t̂ > 0 or q̂ > 1/2

γ̂TC = Ĉ0(X , t)× (2π)3/2 t̂−1 e
t̂2
2 and γ̂Per = Ĉ1(X , t)2 × 16 e t̂

2
.

R = 1 R = 0.9 R = 0.8



default

Effective Ratio of anisotropy

We finally define

R̂ =
γ̂TC

γ̂Per
=

Ĉ0(X , t)

Ĉ1(X , t)2
× (2π)3/2

16
t̂−1 e−

t̂2
2

R = 1 R = 0.9 R = 0.8



default

Is it anisotropic ?

R̂ = 0.7672 R̂ = 1.012 R̂ = 0.8826

R̂ = 0.9029 R̂ = 0.7372 R̂ = 0.9762



default

Conclusion and perspectives

Conclusion :

New geometrical equivalent of spectral moments

Anisotropy estimation available from one excursion set

Extension in dimension d with mean curvature, numerical evaluation
for d = 3

Perspectives :

Second order and higher moment properties

Control of bias induced by discrete simulation/estimation

Extension for fractional Gaussian fields



default
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