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1.1 Markov Chains
A Markov chain is a sequence of random variables ,

which extends the concept of independent and identically

distributed variables.

A sequence of random variables is called a Markov chain if there exists a

function  such that, for each , the following holds:

Here,  is called the Markov kernel.

X0,X1, …

P(x, ⋅) m = 0, 1, 2, …

P(Xm+1 ∈ A ∣ Xm = x) = P(x,A)

P(x, ⋅)
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 represents a probability distribution for each .

The probability that the next state will be in set , given the current state , is

expressed as:

Similarly, the probability that the next-next state will be in set , given the

current state , is:

More generally, for any ,

P(x, ⋅) x

A x

P(x,A) = P(Xm+1 ∈ A ∣ Xm = x)

A
x

P 2(x,A) = P(Xm+2 ∈ A ∣ Xm = x)

n

P n(x,A) = P(Xm+n ∈ A ∣ Xm = x)
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Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

In the �rst type, the behavior (distribution) of  remains dependent on

the initial value , even as  becomes large.

In the second type, this dependency diminishes over time.

The �rst type is called non-ergodic, while the second is ergodic.

Let’s focus on initial value dependency.

Xm

X0 = x m
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1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .

You want to create a new jar by drawing stones from the original jar and

making copies of them in the new one.

After you copy a stone, you put it back into the original jar, so nothing changes

there.

You do this  times, copying one stone each time.

Once the new jar is �lled, the original jar is thrown away, and the process starts

again.

N

N
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Example
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Example

If  (there are 10 stones total in the jar), and 3 of those stones are red,

the chance of picking a red stone on any given draw is .

The number of red stones in the new jar after drawing  times is random but

follows a binomial distribution, which just means the outcome is based on

repeated trials of picking red stones with a certain probability. In this case, the

number of red stones in the new jar follows :

This gives the probability that the new jar will have exactly red stones, where

 is the binomial coe�cient, a way of counting how many ways you can

choose red stones out of  draws.

N = 10
3/10 = 30%

N

B(N , 0.3)

P(X = y) = ( )(0.3)y(0.7)10−y10
y

y

( )N
y

y N
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The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).
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Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the �rst trial (creating the �rst new jar), the number of red stones in the new

jar is random and follows  indenepdent draw from a binomial distribution

.

For each following trial, the same process happens: the number of red stones

in the new jar depends on how many red stones were in the previous jar.

If there were red stones before, the number of red stones in the new jar still

follows a binomial distribution .

This process, where the number of red stones in each new jar depends on the

number from the previous jar, is called the Wright-Fisher model.

x
N − x

N
B(N ,x/N)

x
B(N ,x/N)
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Summary

You start with a jar containing red and blue stones.

You create a new jar by randomly copying stones from the original one, and

the number of red stones in the new jar is based on a binomial distribution.

After each trial, the new jar becomes the starting point for the next trial.

The number of red stones in each new jar depends on how many red

stones were in the previous jar.
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Let's experiment with this model for , starting with 45 red stones, over

25 trials:

N = 100
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Now, let's extend the experiment to 1000 trials. Note that the number of red

stones becomes 0 at some point, and once this happens, the number does not

change:
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When the number of red stones reaches either 0 or , it remains unchanged

thereafter.

A set like , from which the process cannot escape once entered, is called

an absorbing set.

In the Wright-Fisher model, the �nal state will end up in an absorbing set,

either 0 or , and the proportion of each is determined probabilistically based

on the initial number of red stones.

N

{0,N}

N
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1.1 Evaluate  and 

1.2 Let  be a positive integer, and let  be an integer such that .

For the Wright-Fisher model, show that:

E[Xm+1 ∣ Xm = x] Var(Xm+1 ∣ Xm = x)

N x 0 ≤ x ≤ N

E[Xm+1(N − Xm+1) ∣ Xm = x] = (1 − )x(N − x).
1
N
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Exercises 1.

1.1 Evaluate  and 

1.2 Let  be a positive integer, and let  be an integer such that .

For the Wright-Fisher model, show that:

1.3 From the above equation, conclude that  converges in probability to  or

 when .

E[Xm+1 ∣ Xm = x] Var(Xm+1 ∣ Xm = x)

N x 0 ≤ x ≤ N

E[Xm+1(N − Xm+1) ∣ Xm = x] = (1 − )x(N − x).
1
N

Xm 0
N m → ∞
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1.3 Autoregressive Model
A Markov chain de�ned by

where  are independent, is called an autoregressive model.

From this equation, we can derive:

Xm+1 = αXm + Wm+1, Wm+1 ∼ N (0,σ2),

W1,W2, …

Xm = αmX0 +
m−1

∑
n=0

αnWm−n.

15 / 87

Due to the reproductive property of normal distributions, we �nd that 

follows a normal distribution:

Xm

Xm ∼ N (αmX0, σ2) ,
1 − α2m

1 − α2
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Due to the reproductive property of normal distributions, we �nd that 

follows a normal distribution:

and if ,

The autoregressive model di�ers from the Wright-Fisher model in that the

limiting distribution does not depend on the initial value.

Xm

Xm ∼ N (αmX0, σ2) ,
1 − α2m

1 − α2

|α| < 1

Xm → N (0, ) as m → ∞.
σ2

1 − α2
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Example: Autoregressive Process
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Summary

We introduced two types of Markov chains: the Wright-Fisher model and

the Autoregressive model.

These two chains exhibit distinctly di�erent behaviors.

In the Wright-Fisher model, the marginal distribution remains in�uenced by

the initial state, even after a large number of iterations.

In contrast, the Autoregressive model shows diminishing dependence on

the initial state as the number of iterations increases, with the system

gradually stabilizing.

Let’s continue with a more detailed explanation of ergodicity and the concepts

involved in the behavior of Markov chains.
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An invariant probability measure is a measure that remains

unchanged under the transition induced by a Markov kernel. It

serves as the limiting measure of an ergodic Markov chain. However,

the converse does not hold true.

If a Markov chain is ergodic, as in the case of the autoregressive model where

, there exists a limiting distribution for , denoted by .

If , then  must also hold. A probability distribution  that

satis�es this property is called an invariant probability measure.

|α| < 1 Xm Π

X0 ∼ Π X1 ∼ Π Π

22 / 87
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Singularity

Probability measures are said to be mutually singular if they are

entirely distinct. We will assume that the Markov chains starting

from di�erent points are not mutually singular, ensuring that the

chains mix well.

Two probability distributions  and  are said to be mutually singular if there

exists a set  such that:

In this case, we write . If  and  are not mutually singular, we write

.

P Q
A

P(A) = 0 and Q(Ac) = 0.

P ⊥ Q P Q
P ⊥/Q
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probability density functions.
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Let’s visualize this property on the next page using the overlapping areas of two

probability density functions.

If there is a shared red region under both probability density functions, then

. If no such region exists, then .P ⊥/Q P ⊥ Q
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Total Variation

Total variation distance measures the di�erence between two

probability distributions. It can be visualized as the area between the

two probability density functions.

We de�ne the total variation distance between two probability distributions 

and  as:

This measures the di�erence between the probability density functions 

and .

P
Q

∥P − Q∥TV = ∫
E

|p(x) − q(x)| dx.

p(x)
q(x)

26 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

∥P − Q∥TV = Blue Region + Green Region.

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

∥P − Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

∥P − Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

Thus, the areas of the blue and green regions are equal:

∥P − Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

Blue Region = Green Region = ∥P − Q∥TV.
1
2
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The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

Thus, the areas of the blue and green regions are equal:

Hence, the area of the red region is:

If , the area of the red region is 0, meaning that , and

conversely, if , then .

∥P − Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

Blue Region = Green Region = ∥P − Q∥TV.
1
2

Red Region = 1 − ∥P − Q∥TV.
1
2

P ⊥ Q ∥P − Q∥TV = 2
P ⊥/Q ∥P − Q∥TV < 2
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Summary

An invariant probability measure is a measure that remains unchanged

under the transition dynamics of a Markov chain.

If the red region of the graph is zero, we say that the two probability

measures are mutually singular.

This red region can be expressed as , where

 is the total variation distance between the measures  and .

1 − ∥P − Q∥TV/2
∥P − Q∥TV P Q
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Exercise 2.

2.1 For a real number , �nd the total variation distance

.

μ
∥N (0, 1) − N (μ, 1)∥TV
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Exercise 2.

2.1 For a real number , �nd the total variation distance

.

2.2 For a real number , �nd the total variation distance

.

2.3 Prove that no invariant probability measure exists for the Autoregressive

model when . (Hint: Evaluate the characteristic function. Recall that every

characteristic function  satis�es  and is continuous at .)

μ
∥N (0, 1) − N (μ, 1)∥TV

σ > 0
∥N (0, 1) − N (0,σ2)∥TV

α = 1
ψ(u) ψ(0) = 1 u = 0
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Then, for almost all points  and sets :

Moreover, if , the law of large numbers holds:
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Π

x A

P m(x,A) ⟶m→∞ Π(A).
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1.5 Theorem (The law of large
numbers):
For any points  and , assume .

Further, suppose there exists an invariant probability distribution .

Then, for almost all points  and sets :

Moreover, if , the law of large numbers holds:

as long as the right-hand side exists.

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

x A

P m(x,A) ⟶m→∞ Π(A).

X0 = x

M−1

∑
m=0

f(Xm) ⟶M→∞ ∫ f(x)Π(dx),
1
M
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The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

The proof concludes when the red region occupies 100% of the area, meaning

that  and  coincide completely as .

It is easy to see that this limiting distribution matches .

Technically, it is not easy to directly observe the total variation

distance. The coupling technique is a useful method for estimating

the quantity, and we will brie�y discuss it.

For more details, see "Kulik (2017)" Theorem 2.5.1.

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2, …
P n(x, ⋅) P n(y, ⋅) n
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Π
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1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

Consider two continuous probability distributions  and  on the real line.

If  and  are independent and distributed according to  and ,

respectively, then:

even if  and  are very close or even identical.

However, with coupling, we can construct the pair  in such a way that

we increase the probability  or reduce the di�erence .

P Q

X Y P Q

P(X = Y ) = 0,

P Q

(X,Y )
P(X = Y ) |X − Y |
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Coupling (continued)

Coupling is a method for constructing a pair , where  and

, in such a way that we increase the probability  or make

 smaller.

In Markov chain convergence theory, optimal coupling plays an important

role. Optimal coupling maximizes , which is bene�cial for proving

convergence.

(X,Y ) X ∼ P

Y ∼ Q P(X = Y )
|X − Y |

P(X = Y )
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Imagine we have 100 German and 100 Japanese male Judo players (Judoka).

Our goal is to pair them by matching those in the same weight class. Ideally, we

want to create as many matches where the weight classes of the players, 

and , are identical, meaning .

X
Y X = Y

The beautiful image was shared by Joshua Jamias  on Unsplash
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However, even with careful pairing, there’s a limit to the number of same-class

matches we can create.

For example:

If there are 3 German and 5 Japanese players in the under-66 kg weight class,

the maximum number of same-class matches is 3.

If there are 6 German and 2 Japanese players in the 81 kg weight class, the

maximum number of same-class matches is 2.

Therefore, the total number of same-class matches is determined by the

smaller number of players from each group in every weight class. Any

remaining players will participate in mixed-class matches, where .X ≠ Y
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The proportion of same-class matches corresponds to the red region in the

plot, representing the overlap of the probability densities.
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The proportion of same-class matches corresponds to the red region in the

plot, representing the overlap of the probability densities.

Mathematically, when two distributions  and  are coupled, the maximum

probability of forming a match  is:

This coupling, which achieves this maximum probability, is called optimal

coupling.

P Q
X = Y

P(X = Y ) = 1 − ∥P − Q∥TV.
1
2
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Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from di�erent initial values  and .

From the initial values, we generate the next states  using coupling:

From these new states , we generate the next pair

 using coupling:

This process is repeated inde�nitely.

Once , they remain coupled for all future steps.

x0 y0

(X1,Y1)

P(x0, ⋅),P(y0, ⋅).

(X1 = x1,Y1 = y1)
(X2,Y2)

P(x1, ⋅),P(y1, ⋅).

Xm = Ym
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The inequality

is always true.

P(Xm = Ym) ≤ 1 − ∥P m(x, ⋅) − P m(y, ⋅)∥TV.
1
2
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The inequality

is always true.

Through coupling, the left-hand side provides a good bound of the right-hand

side, and is easier to estimate.

P(Xm = Ym) ≤ 1 − ∥P m(x, ⋅) − P m(y, ⋅)∥TV.
1
2
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Coupling Before and After

Before coupling (left side of the plot):
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After coupling (right side of the plot):
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Summary

The law of large numbers applies to Markov chains as well.

A su�cient condition for this is that  and  are not mutually

singular, and that an invariant probability measure exists.

Coupling is a powerful technique used to establish the law of large

numbers in Markov chains.

P(x, ⋅) P(y, ⋅)
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From here ...

We introduced the law of large numbers for Markov chains.

From here, we will introduce a Monte Carlo method using the theorem.
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2. Markov chain Monte Carlo
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2. Markov chain Monte Carlo
The Markov Chain Monte Carlo (MCMC) method is a powerful

numerical technique used to approximate expectations by

leveraging the law of large numbers of Markov chains. It generates

samples from a target distribution by constructing a Markov chain

that converges to this distribution, allowing for the estimation of

complex integrals or probabilistic quantities that are otherwise

intractable
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2.1 Metropolis Algorithm
The Metropolis algorithm is a core component of MCMC, which

constructs a reversible Markov chain to sample from a target

distribution.

Let the state space  be a discrete set, and let  be the probability distribution

of interest, with probability function .

We attempt to transition from  to  with transition probability:

Now, assume stationarity has been reached, meaning that the random variable

 satis�es .

E Π
π(x)

x y

q(x, y).

X P(X = x) = π(x)
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The out�ow from  to  in one step is the original probability  multiplied

by the transition probability :

x y π(x)
q(x, y)

π(x)q(x, y).
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The out�ow from  to  in one step is the original probability  multiplied

by the transition probability :

Conversely, the in�ow from  to  is:

x y π(x)
q(x, y)

π(x)q(x, y).

y x

π(y)q(y,x).

45 / 87

Introducing Traffic Control

46 / 87

Introducing Traffic Control

Let’s introduce some tra�c control measures. If the out�ow from  to  is

less than the in�ow from  to , that is,

x y
y x

46 / 87

Introducing Traffic Control

Let’s introduce some tra�c control measures. If the out�ow from  to  is

less than the in�ow from  to , that is,

x y
y x

π(x)q(x, y) < π(y)q(y,x),

46 / 87

Introducing Traffic Control

Let’s introduce some tra�c control measures. If the out�ow from  to  is

less than the in�ow from  to , that is,

then we don’t prevent the transition from  to .

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

46 / 87

Introducing Traffic Control

Let’s introduce some tra�c control measures. If the out�ow from  to  is

less than the in�ow from  to , that is,

then we don’t prevent the transition from  to .

On the other hand, if the out�ow from  to  is greater, we control the in�ow

and out�ow by allowing the transition with a probability of:

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

x y

46 / 87

Introducing Traffic Control

Let’s introduce some tra�c control measures. If the out�ow from  to  is

less than the in�ow from  to , that is,

then we don’t prevent the transition from  to .

On the other hand, if the out�ow from  to  is greater, we control the in�ow

and out�ow by allowing the transition with a probability of:

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

x y

.
π(y)q(y,x)
π(x)q(x, y)

46 / 87

Introducing Traffic Control

Let’s introduce some tra�c control measures. If the out�ow from  to  is

less than the in�ow from  to , that is,

then we don’t prevent the transition from  to .

On the other hand, if the out�ow from  to  is greater, we control the in�ow

and out�ow by allowing the transition with a probability of:

If the transition is not allowed, the process stays at .

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

x y

.
π(y)q(y,x)
π(x)q(x, y)

x
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If , we allow the transition with probability

.

π(x)q(x, y) ≤ π(y)q(y,x) x y

π(x)q(x, y) > π(y)q(y,x)
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To summarize the two cases:

If , we allow the transition from  to  without

restriction.

If , we allow the transition with probability

.

This acceptance function  is the core idea behind the Metropolis

algorithm.

π(x)q(x, y) ≤ π(y)q(y,x) x y

π(x)q(x, y) > π(y)q(y,x)

α(x, y) = min{1, }π(y)q(y,x)
π(x)q(x,y)

α(x, y)
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Algorithm:

The Metropolis algorithm proceeds as follows:

1. Start from an initial value .

2. Propose a new state  by generating .

3. Draw .

4. If , move to , otherwise stay at .

x

y y ∼ Q(x, ⋅)

u ∼ U[0, 1]

u ≤ α(x, y) y x
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Reversiblity

The out�ow and in�ow becomes the same. A Markov chain with this

balance is called reversible. This prpoerty is the basis for the

Metropolis algorithm.

A Markov kernel  is called -reversible for a measure  if

are the same for any  and .

If  is a probability measure, then  is an invariant probability measure.

P(x, ⋅) Π Π

∫
A

Π(dx)P(x,B) = ∫
B

Π(dx)P(x,A)

A B

Π Π
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Summary

The Markov Chain Monte Carlo (MCMC) algorithm is a numerical method

for approximating integrals, leveraging the law of large numbers for

Markov chains.

The Metropolis algorithm, a core MCMC technique, relies on the principle

of reversibility.

The Metropolis algorithm operates by repeating a two-step process:

Propose a new state and then either Accept or Reject it.
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2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

The most basic type of Metropolis algorithm is the random walk Metropolis

algorithm. In this method, a random step is proposed from the current state,

and the step is either accepted or rejected based on the acceptance ratio.

Here’s an example of a random walk Metropolis algorithm in R:

sd <- 0.25

target <- function(x) 1/(1 + x^2)

v <- numeric(1e2)

x <- runif(1)

for(i in 1:length(v)) {

  y <- x + sd * rnorm(1)

if(runif(1) < target(y)/target(x)) x <- y #<< Acceptance step

  v[i] <- x

}
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In this algorithm:

where  is a step size, and  is a random sample from the normal distribution.

y = x + σw, w ∼ N (0, Id),

σ w
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In this algorithm:

where  is a step size, and  is a random sample from the normal distribution.

If the new state  is accepted, it becomes the next state of the Markov chain;

otherwise, the chain remains at .

y = x + σw, w ∼ N (0, Id),

σ w

y
x
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Choice of  and dimensionality
The selection of the standard deviation in the random-walk

Metropolis algorithm has been widely discussed. In this section, we

focus on Roberts, Gelman and Gilks 97 , which provides valuable

insight into how to make this choice.

The Metropolis-Hastings algorithm is a�ected by the curse of

dimensionality, directly tied to the choice of the step size, .

Balancing out�ow and in�ow (reversibility), can introduce challenges for

the algorithm's e�ciency.

σ

σ
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Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time  has been accepted.

Therefore, the probability of accepting a move is:

Due to reversibility, we have the following balance property:

Thus, the acceptance probability equals:

Denote the proposed state as , then the acceptance probability is less than:

(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

P(∥X0∥ ≠ ∥X1∥).

P(∥X0∥2 < ∥X1∥2) = P(∥X0∥2 > ∥X1∥2).

2 ⋅ P(∥X0∥2 > ∥X1∥2).

Y1

2 ⋅ P(∥X0∥2 > ∥Y1∥2).
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The proposed state is generated as follows:

Then ...

where  follows a uniform distribution on the unit sphere.

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

= 2 ⋅ P(∥X0∥2 > ∥X0∥2 + 2σX⊤
0 W + σ2∥W∥2)

= 2 ⋅ P(−2σX⊤
0 W > σ2∥W∥2)

= 2 ⋅ P(−2X⊤
0 e > σ∥W∥),

e = W/∥W∥
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Dimensionality Effects

Assuming  and , unless , the

acceptance probability decreases quickly.

X⊤
0 e = O(1) ∥W∥ = O(d1/2) σ = O(d−1/2)
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Dimensionality Effects

Assuming  and , unless , the

acceptance probability decreases quickly.

Conversely, if , the algorithm cannot make large moves,

revealing the curse of dimensionality.

X⊤
0 e = O(1) ∥W∥ = O(d1/2) σ = O(d−1/2)

σ = O(d−1/2)
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Taking it Further

If  follows a -dimensional standard normal distribution, the right-hand side

becomes:

X0 d

2E [Φ(−σ∥W∥/2)] .
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Taking it Further

If  follows a -dimensional standard normal distribution, the right-hand side

becomes:

A useful performance measure for the random-walk Metropolis algorithm is the

expected squared jump distance (ESJD):

There are few reliable measures for assessing the performance of

MCMC methods. ESJD is sometimes used because it is relatively

straightforward to analyze theoretically. However, like many

performance metrics, the direct link between ESJD and actual

algorithm e�ciency remains unclear.

X0 d

2E [Φ(−σ∥W∥/2)] .

E [∥X1 − X0∥2] .
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ESJD can be simpli�ed as:

2E [∥X1 − X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .
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ESJD can be simpli�ed as:

This value is maximized when  takes a speci�c value. At this maximum,

the average acceptance probability is approximately 23.4% (treating  as

constant).

So we may use 23.4% ratio as a criterion of the choice of the tuning parameter

.

We initially assumed , meaning . However, this

assumption can be relaxed. Empirically, it is believed that this criterion is

relatively robust across di�erent settings.

2E [∥X1 − X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

= E [Φ(−σ∥W∥/2) ⋅ σ2∥W∥2] .

σ∥W∥
σ∥W∥

σ

X0 ∼ N (0, Id) Π = N (0, Id)
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Summary

The choice of the step size  is crucial for the performance of the

algorithm. If  is too large, the rejection rate increases. If  is too small, the

proposed state will be too close to the current one, leading to slow

exploration.

This impact can be quanti�ed using the expected squared jump distance

(ESJD), a measure of how far the chain moves.

There is an optimal value of  that maximizes the ESJD. When this is

achieved, the average acceptance rate is approximately 23.4%.

σ
σ σ

σ
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3.1 Verify that

also satis�es the balance between in�ow and out�ow.

α(x, y) =
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Exercise 3.

3.1 Verify that

also satis�es the balance between in�ow and out�ow.

3.2 Write a code (R, python etc.) for a random walk Metropolis algorithm for the

distribution .

3.3 Discuss the use of a heavy-tailed distribution as the law of  in terms of

the Expected Squared Jump Distance when the target distribution is standard

normal.

α(x, y) =
π(y) q(y,x)

π(x) q(x, y) + π(y) q(y,x)

π(x) ∝ 1
1+x2

W
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2.3 Preconditioned Crank-Nicolson
(pCN) and Gaussian perturbation

The pCN algorithm uses an autoregressive model as its proposal

mechanism. This approach is particularly e�ective when the target

distribution is a small perturbation of a normal distribution.

A variant of the Metropolis algorithm is the preconditioned Crank-Nicolson

(pCN) method, often used in Bayesian computation. This method is well-suited

for high-dimensional problems.

The proposed state in the pCN algorithm is given by:

where  is a tuning parameter.

y = ρx + σ√1 − ρ2w, w ∼ N (0, Id),

ρ ∈ (−1, 1)
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Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

de�ned as:

where  is the prior distribution and  represents the log-likelihood.

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)
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Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

de�ned as:

where  is the prior distribution and  represents the log-likelihood.

The goal is to compute the expectation of a function with respect to this

posterior distribution.

In typical Bayesian inverse problems, the parameter space is a high-

dimensional Euclidean space, with  being a normal distribution.

In this setting, the random-walk Metropolis algorithm tends to perform poorly.

But how does the pCN algorithm fare?

Assume  and let .

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

P(dθ)

P = N (0, 1) σ = 1
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Thanks to the autoregressive nature of the pCN model, the transition:

is reversible with respect to .

This means that only minimal tra�c control is required for ensuring stability.

Speci�cally, the acceptance probability is given by:

where  is the proposed state and  is the current state.

Even in high dimensions, sometimes this ratio tends to be stable, unlike the

behavior seen with the random-walk Metropolis algorithm.

y = ρx + √1 − ρ2w, w ∼ N (0, Id),

N (0, Id)

min {1, exp(l(θ∗) − l(θ))} ,

θ∗ θ
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Summary

The pCN algorithm is speci�cally designed for handling Gaussian

perturbations.

In high-dimensional settings, it often maintains a high acceptance

probability.

However, it's important to note that its performance deteriorates

signi�cantly when the target distribution deviates far from Gaussian. This

method is sometimes not robust.
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Exercise 4.

4.1 Verify that the acceptance ratio for the preconditioned Crank-Nicolson

algorithm, with the target distribution

is given by

Π(dx) ∝ exp(−U(x) − x2/2)dx

α(x, y) = min {1, exp(−U(y) + U(x))} .
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4.1 Verify that the acceptance ratio for the preconditioned Crank-Nicolson

algorithm, with the target distribution

is given by

4.2 Write code (in R, Python, etc.) for the preconditioned Crank-Nicolson

algorithm targeting the distribution . Conclude that the

performance, although not mathematically de�ned, is worse compared to the

random walk Metropolis algorithm.
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π(x) ∝ 1
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Exercise 4.

4.1 Verify that the acceptance ratio for the preconditioned Crank-Nicolson

algorithm, with the target distribution

is given by

4.2 Write code (in R, Python, etc.) for the preconditioned Crank-Nicolson

algorithm targeting the distribution . Conclude that the

performance, although not mathematically de�ned, is worse compared to the

random walk Metropolis algorithm.

4.3 Discuss the reason behind this observation.

Π(dx) ∝ exp(−U(x) − x2/2)dx

α(x, y) = min {1, exp(−U(y) + U(x))} .

π(x) ∝ 1
1+x2
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3.1 Non-Reversibility in descrete time
From here, we'll explore non-reversible methods as an advanced

topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they o�er a broader range of options and

can enhance the e�ciency of certain sampling techniques.

Let’s now discuss the reversibility and non-reversibility in the Metropolis

algorithms.

Reversibility simpli�es algorithm design but can sometimes lead to ine�ciency.

In certain cases, the Markov chain spends too much time exploring the same

areas, leading to longer travel distances before covering the state space

adequately.
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Lifting

One way to introduce non-reversibility is through a technique called lifting,

which involves extending the state space.

In lifting, we introduce a velocity variable  and allow the chain to

switch directions at certain points.

For example, starting from , the algorithm can move to  if

the proposal is accepted. If rejected, it stays at .

v ∈ {−1, +1}

(x, +1) (x + |w|, −1)
(x, +1)
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Lifting Visualization: Example by Gustafson 1996

Here’s an example of how lifting works in practice:
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Summary

Recall that the Metropolis algorithm is a two-step procedure: propose and

then accept or reject.

The lifting procedure works as follows:

If the proposal is accepted, the direction remains unchanged. If it is

rejected, the sign is reversed.

This method works well in one dimension. However, extending it to multiple

dimensions requires special care.
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Some recent progress in puctures (K., Song 2023)

Extending the previous method to the multidimensional case in a

more useful direction was challenging. Due to time constraints, we

present the recent results in pictures only.
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Multi-dim case:  (Autoregressive)Rd
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Multi-dim case:  (Beta-Gamma)Rd
+
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Exercise 5.

5.1 Write code (in R, Python, etc.) for the random walk Metropolis algorithm

with lifting with targeting the distribution . Plot a path and

compare it to that of the random walk Metropolis algorithm.

π(x) ∝ 1
1+x2
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Designing non-reversible methods has been challenging because it

requires balancing in�ow and out�ow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.

Recently, algorithms that operate in continuous time, such as the Zig-Zag

Sampler and Bouncy Particle Sampler, have gained attention.

These algorithms de�ne piecewise determinsitic Markov processes.

These methods remove the need to de�ne discrete-time steps and allow the

chain to move continuously through the state space.
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A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a di�usion term.

This process has been highlighted in Monte Carlo literature, speci�cally in

Peters and de With 2012  and Michel et al. 2014 .

The PDMP is characterised by being non-reversible and distinct from

traditional Markov chain Monte Carlo (MCMC) methods, as it is a continuous-

time process.

Also PDMPs seem to be suitable for a sub-sampling implementation.
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PDMP triplet Davis1984

Let  be the state space. The triplet  consists of:

Flow: , where  and .

Conditional intensity: .

Jump size: , which is a Markov kernel.

E (φ,λ,Q)

(t,x) ↦ φt(x) φ0(x) = x φt(φs(x)) = φt+s(x)

λ(x) ≥ 0

Q(x,A)
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E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}
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This determines  up to time .

Next, we repeat the following for :

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

n = 2, 3, 4, …
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Next, we repeat the following for :

This determines .

1

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

n = 2, 3, 4, …

En ∼ E(1) ⇝ Tn = inf{t > Tn−1 : En ≤ ∫
t

Tn−1

λ(φs−Tn−1(x(Tn−1)))ds}
⇝ x(t) = φt−Tn−1(x(Tn−1)) (Tn−1 < t < Tn), x(Tn) ∼ Q(x(Tn−), ⋅)

x(t)

1 If  (i.e., if the process is non-explosive), then  is not de�ned

for .

P(supn Tn = ∞) ≠ 1 x(t)
t ∈ R+
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The process is de�ned in .

We are interested in . Let .

: State variable

: Velocity vector

Flow:  �xed. .

There are are two souces of jumps:

Conditional intensity: .

Jump size:  �xed. .

and

Conditional intensity: .

Jump size:  �xed. .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

x v ↦ v − 2 × v⊤n(x) n(x)

ρ

x v ∼ N (0, Id)
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Extended generator

A continuous Markov process is characterized by the short-term

behavior of the process. For a Markov process , this is

essentially the derivative of  with respect to  at

.

where  and , and  is

the refresh operator which changes the direction  randomly.

(Zt)
E[f(Zt) ∣ Z0 = z] t

t = 0

Lf(x, v) = v⊤∂xf(x, v) + (v⊤∇U(x))+ (B − id)f(x, v) + ρ (R − id)f(x, v)

Bf(x, v) = f(x,B(x)v) B(x)v = (I − 2n(x)n(x)⊤)v R
v
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Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

The process is de�ned in .

Flow:  �xed. .

There are -sources of jumps:

Conditional intensity: .

Jump size:  �xed. Switch the sign of -th component of .

Rd × {−1, +1}d

v x′ = v

d

λi(x) = (vi∂iU(x))+

x i v
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Here’s an example of the Zig-Zag Sampler in three dimensions:
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Extended generator

State space .

where  and  switches the -th coordinate of .

Rd × {−1, +1}d

Lf(x, v) = v⊤∂xf(x, v) +
d

∑
i=1

(vi∂iU(x))+ (Fi − id)f(x, v)

Fif(x, v) = f(x,Fiv) Fi i v
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(Anyway, ) Di�erent from MCMC

Packages

RZigZag : Code: R, Algorithms: BPS, ZZ

PDSampler.jl : Code: Julia, Algorithms: BPS

ZigZagBoomerang : Code: Julia, Algorithms: BPS, ZZ, Boomerang

Additionally, check out the brand new pdmp-jax  by Charly Andral!

⇝

86 / 87

Summary

87 / 87

Summary

The ergodicity of Markov chains is demonstrated through non-singularity and

invariance.

87 / 87

Summary

The ergodicity of Markov chains is demonstrated through non-singularity

and invariance.

Markov Chain Monte Carlo (MCMC) methods can approximate integrals,

and we understand both how to design them and why they converge.

87 / 87

Summary

The ergodicity of Markov chains is demonstrated through non-singularity

and invariance.

Markov Chain Monte Carlo (MCMC) methods can approximate integrals,

and we understand both how to design them and why they converge.

As an advanced topic, we treat Continuous-time methods, such as the Zig-Zag

Sampler and Bouncy Particle Sampler.
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1.1 Markov Chains
A Markov chain is a sequence of random variables ,

which extends the concept of independent and identically

distributed variables.

A sequence of random variables is called a Markov chain if there exists a

function  such that, for each , the following holds:

Here,  is called the Markov kernel.

X0,X1,…

P(x, ⋅) m = 0, 1, 2,…

P(Xm+1 ∈ A ∣ Xm = x) = P(x,A)

P(x, ⋅)
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 represents a probability distribution for each .

The probability that the next state will be in set , given the current state , is

expressed as:

Similarly, the probability that the next-next state will be in set , given the

current state , is:

More generally, for any ,

P(x, ⋅) x

A x

P(x,A) = P(Xm+1 ∈ A ∣ Xm = x)

A
x

P 2(x,A) = P(Xm+2 ∈ A ∣ Xm = x)

n

P n(x,A) = P(Xm+n ∈ A ∣ Xm = x)
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Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

In the �rst type, the behavior (distribution) of  remains dependent on

the initial value , even as  becomes large.

In the second type, this dependency diminishes over time.

The �rst type is called non-ergodic, while the second is ergodic.

Let’s focus on initial value dependency.

Xm
X0 = x m
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1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .

You want to create a new jar by drawing stones from the original jar and

making copies of them in the new one.

After you copy a stone, you put it back into the original jar, so nothing changes

there.

You do this  times, copying one stone each time.

Once the new jar is �lled, the original jar is thrown away, and the process starts

again.

N

N
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Example

If  (there are 10 stones total in the jar), and 3 of those stones are red,

the chance of picking a red stone on any given draw is .

The number of red stones in the new jar after drawing  times is random but

follows a binomial distribution, which just means the outcome is based on

repeated trials of picking red stones with a certain probability. In this case, the

number of red stones in the new jar follows :

This gives the probability that the new jar will have exactly red stones, where

 is the binomial coe�cient, a way of counting how many ways you can

choose red stones out of  draws.

N = 10
3/10 = 30%

N

B(N , 0.3)

P(X = y) = ( )(0.3)y(0.7)10−y10
y

y

( )N
y

y N
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Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

x
N − x

8 / 87



The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the �rst trial (creating the �rst new jar), the number of red stones in the new

jar is random and follows  indenepdent draw from a binomial distribution

.

x
N − x

N
B(N ,x/N)

8 / 87



The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the �rst trial (creating the �rst new jar), the number of red stones in the new

jar is random and follows  indenepdent draw from a binomial distribution

.

For each following trial, the same process happens: the number of red stones

in the new jar depends on how many red stones were in the previous jar.

x
N − x

N
B(N ,x/N)

8 / 87



The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the �rst trial (creating the �rst new jar), the number of red stones in the new

jar is random and follows  indenepdent draw from a binomial distribution

.

For each following trial, the same process happens: the number of red stones

in the new jar depends on how many red stones were in the previous jar.

If there were red stones before, the number of red stones in the new jar still

follows a binomial distribution .

x
N − x

N
B(N ,x/N)

x
B(N ,x/N)

8 / 87



The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the �rst trial (creating the �rst new jar), the number of red stones in the new

jar is random and follows  indenepdent draw from a binomial distribution

.

For each following trial, the same process happens: the number of red stones

in the new jar depends on how many red stones were in the previous jar.

If there were red stones before, the number of red stones in the new jar still

follows a binomial distribution .

This process, where the number of red stones in each new jar depends on the

number from the previous jar, is called the Wright-Fisher model.

x
N − x

N
B(N ,x/N)

x
B(N ,x/N)
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You create a new jar by randomly copying stones from the original one, and

the number of red stones in the new jar is based on a binomial distribution.

After each trial, the new jar becomes the starting point for the next trial.

The number of red stones in each new jar depends on how many red

stones were in the previous jar.
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Let's experiment with this model for , starting with 45 red stones, over

25 trials:

N = 100
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Now, let's extend the experiment to 1000 trials. Note that the number of red

stones becomes 0 at some point, and once this happens, the number does not

change:
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When the number of red stones reaches either 0 or , it remains unchanged

thereafter.
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When the number of red stones reaches either 0 or , it remains unchanged

thereafter.

A set like , from which the process cannot escape once entered, is called

an absorbing set.

In the Wright-Fisher model, the �nal state will end up in an absorbing set,

either 0 or , and the proportion of each is determined probabilistically based

on the initial number of red stones.

N

{0,N}

N
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1.1 Evaluate  and 

1.2 Let  be a positive integer, and let  be an integer such that .

For the Wright-Fisher model, show that:

E[Xm+1 ∣ Xm = x] Var(Xm+1 ∣ Xm = x)

N x 0 ≤ x ≤ N

E[Xm+1(N −Xm+1) ∣ Xm = x] = (1 − )x(N − x).
1
N
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Exercises 1.

1.1 Evaluate  and 

1.2 Let  be a positive integer, and let  be an integer such that .

For the Wright-Fisher model, show that:

1.3 From the above equation, conclude that  converges in probability to  or

 when .

E[Xm+1 ∣ Xm = x] Var(Xm+1 ∣ Xm = x)

N x 0 ≤ x ≤ N

E[Xm+1(N −Xm+1) ∣ Xm = x] = (1 − )x(N − x).
1
N

Xm 0
N m→∞
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1.3 Autoregressive Model
A Markov chain de�ned by

where  are independent, is called an autoregressive model.

From this equation, we can derive:

Xm+1 = αXm +Wm+1, Wm+1 ∼ N (0,σ2),

W1,W2,…

Xm = αmX0 +
m−1

∑
n=0

αnWm−n.
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Due to the reproductive property of normal distributions, we �nd that 

follows a normal distribution:

Xm

Xm ∼ N (αmX0, σ2) ,1 − α2m

1 − α2
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Due to the reproductive property of normal distributions, we �nd that 

follows a normal distribution:

and if ,

The autoregressive model di�ers from the Wright-Fisher model in that the

limiting distribution does not depend on the initial value.

Xm

Xm ∼ N (αmX0, σ2) ,
1 − α2m

1 − α2

|α| < 1

Xm → N (0, ) as m→ ∞.
σ2

1 − α2
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Example: Autoregressive Process
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Summary

We introduced two types of Markov chains: the Wright-Fisher model and

the Autoregressive model.

These two chains exhibit distinctly di�erent behaviors.

In the Wright-Fisher model, the marginal distribution remains in�uenced by

the initial state, even after a large number of iterations.

In contrast, the Autoregressive model shows diminishing dependence on

the initial state as the number of iterations increases, with the system

gradually stabilizing.

Let’s continue with a more detailed explanation of ergodicity and the concepts

involved in the behavior of Markov chains.
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Invariant Probability Measure

An invariant probability measure is a measure that remains

unchanged under the transition induced by a Markov kernel. It

serves as the limiting measure of an ergodic Markov chain. However,

the converse does not hold true.

If a Markov chain is ergodic, as in the case of the autoregressive model where

, there exists a limiting distribution for , denoted by .

If , then  must also hold. A probability distribution  that

satis�es this property is called an invariant probability measure.

|α| < 1 Xm Π

X0 ∼ Π X1 ∼ Π Π

22 / 87
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Singularity

Probability measures are said to be mutually singular if they are

entirely distinct. We will assume that the Markov chains starting

from di�erent points are not mutually singular, ensuring that the

chains mix well.

Two probability distributions  and  are said to be mutually singular if there

exists a set  such that:

In this case, we write . If  and  are not mutually singular, we write

.

P Q
A

P(A) = 0 and Q(Ac) = 0.

P ⊥ Q P Q
P ⊥/ Q
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Let’s visualize this property on the next page using the overlapping areas of two

probability density functions.
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Let’s visualize this property on the next page using the overlapping areas of two

probability density functions.

If there is a shared red region under both probability density functions, then

. If no such region exists, then .P ⊥/Q P ⊥ Q
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Total Variation

Total variation distance measures the di�erence between two

probability distributions. It can be visualized as the area between the

two probability density functions.

We de�ne the total variation distance between two probability distributions 

and  as:

This measures the di�erence between the probability density functions 

and .

P
Q

∥P −Q∥TV = ∫
E

|p(x) − q(x)| dx.

p(x)
q(x)
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the diagram, representing the areas under each function.
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The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

Thus, the areas of the blue and green regions are equal:

∥P −Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

Blue Region = Green Region = ∥P −Q∥TV.
1
2
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The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

Thus, the areas of the blue and green regions are equal:

Hence, the area of the red region is:

If , the area of the red region is 0, meaning that , and

conversely, if , then .

∥P −Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

Blue Region = Green Region = ∥P −Q∥TV.
1
2

Red Region = 1 − ∥P −Q∥TV.
1
2

P ⊥ Q ∥P −Q∥TV = 2
P ⊥/Q ∥P −Q∥TV < 2
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Summary

An invariant probability measure is a measure that remains unchanged

under the transition dynamics of a Markov chain.

If the red region of the graph is zero, we say that the two probability

measures are mutually singular.

This red region can be expressed as , where

 is the total variation distance between the measures  and .

1 − ∥P −Q∥TV/2
∥P −Q∥TV P Q
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Exercise 2.

2.1 For a real number , �nd the total variation distance

.

μ
∥N (0, 1) −N (μ, 1)∥TV
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Exercise 2.

2.1 For a real number , �nd the total variation distance

.

2.2 For a real number , �nd the total variation distance

.

2.3 Prove that no invariant probability measure exists for the Autoregressive

model when . (Hint: Evaluate the characteristic function. Recall that every

characteristic function  satis�es  and is continuous at .)

μ
∥N (0, 1) −N (μ, 1)∥TV

σ > 0
∥N (0, 1) −N (0,σ2)∥TV

α = 1
ψ(u) ψ(0) = 1 u = 0

29 / 87
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1.5 Theorem (The law of large
numbers):
For any points  and , assume .

Further, suppose there exists an invariant probability distribution .

Then, for almost all points  and sets :

Moreover, if , the law of large numbers holds:

as long as the right-hand side exists.

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

x A

P m(x,A)⟶m→∞ Π(A).

X0 = x

M−1

∑
m=0

f(Xm)⟶M→∞ ∫ f(x)Π(dx),
1
M
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It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .
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1
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n = 1, 2,…
P n(x, ⋅) P n(y, ⋅) n
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that  and  coincide completely as .
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Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

The proof concludes when the red region occupies 100% of the area, meaning

that  and  coincide completely as .

It is easy to see that this limiting distribution matches .

Technically, it is not easy to directly observe the total variation

distance. The coupling technique is a useful method for estimating

the quantity, and we will brie�y discuss it.

For more details, see "Kulik (2017)" Theorem 2.5.1.

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2,…
P n(x, ⋅) P n(y, ⋅) n

P n(x, ⋅) P n(y, ⋅) n→∞

Π
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1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

Consider two continuous probability distributions  and  on the real line.

If  and  are independent and distributed according to  and ,

respectively, then:

even if  and  are very close or even identical.

However, with coupling, we can construct the pair  in such a way that

we increase the probability  or reduce the di�erence .

P Q

X Y P Q

P(X = Y ) = 0,

P Q

(X,Y )
P(X = Y ) |X − Y |
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Coupling (continued)

Coupling is a method for constructing a pair , where  and

, in such a way that we increase the probability  or make

 smaller.

In Markov chain convergence theory, optimal coupling plays an important

role. Optimal coupling maximizes , which is bene�cial for proving

convergence.

(X,Y ) X ∼ P

Y ∼ Q P(X = Y )
|X − Y |

P(X = Y )
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Imagine we have 100 German and 100 Japanese male Judo players (Judoka).

Our goal is to pair them by matching those in the same weight class. Ideally, we

want to create as many matches where the weight classes of the players, 

and , are identical, meaning .

X
Y X = Y

The beautiful image was shared by Joshua Jamias  on Unsplash
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However, even with careful pairing, there’s a limit to the number of same-class

matches we can create.
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However, even with careful pairing, there’s a limit to the number of same-class

matches we can create.

For example:

If there are 3 German and 5 Japanese players in the under-66 kg weight class,

the maximum number of same-class matches is 3.

If there are 6 German and 2 Japanese players in the 81 kg weight class, the

maximum number of same-class matches is 2.

Therefore, the total number of same-class matches is determined by the

smaller number of players from each group in every weight class. Any

remaining players will participate in mixed-class matches, where .X ≠ Y
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The proportion of same-class matches corresponds to the red region in the

plot, representing the overlap of the probability densities.
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The proportion of same-class matches corresponds to the red region in the

plot, representing the overlap of the probability densities.

Mathematically, when two distributions  and  are coupled, the maximum

probability of forming a match  is:

This coupling, which achieves this maximum probability, is called optimal

coupling.

P Q
X = Y

P(X = Y ) = 1 − ∥P −Q∥TV.
1
2
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Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from di�erent initial values  and .x0 y0
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Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from di�erent initial values  and .

From the initial values, we generate the next states  using coupling:

From these new states , we generate the next pair

 using coupling:

This process is repeated inde�nitely.

Once , they remain coupled for all future steps.

x0 y0

(X1,Y1)

P(x0, ⋅),P(y0, ⋅).

(X1 = x1,Y1 = y1)
(X2,Y2)

P(x1, ⋅),P(y1, ⋅).

Xm = Ym
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The inequality

is always true.

P(Xm = Ym) ≤ 1 − ∥P m(x, ⋅) − P m(y, ⋅)∥TV.
1
2
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The inequality

is always true.

Through coupling, the left-hand side provides a good bound of the right-hand

side, and is easier to estimate.

P(Xm = Ym) ≤ 1 − ∥P m(x, ⋅) − P m(y, ⋅)∥TV.
1
2
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Coupling Before and After

Before coupling (left side of the plot):
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After coupling (right side of the plot):
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Summary

The law of large numbers applies to Markov chains as well.

A su�cient condition for this is that  and  are not mutually

singular, and that an invariant probability measure exists.

Coupling is a powerful technique used to establish the law of large

numbers in Markov chains.

P(x, ⋅) P(y, ⋅)

41 / 87



From here ...
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From here ...

We introduced the law of large numbers for Markov chains.
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From here ...

We introduced the law of large numbers for Markov chains.

From here, we will introduce a Monte Carlo method using the theorem.
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2. Markov chain Monte Carlo
The Markov Chain Monte Carlo (MCMC) method is a powerful

numerical technique used to approximate expectations by

leveraging the law of large numbers of Markov chains. It generates

samples from a target distribution by constructing a Markov chain

that converges to this distribution, allowing for the estimation of

complex integrals or probabilistic quantities that are otherwise

intractable
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2.1 Metropolis Algorithm
The Metropolis algorithm is a core component of MCMC, which

constructs a reversible Markov chain to sample from a target

distribution.

Let the state space  be a discrete set, and let  be the probability distribution

of interest, with probability function .

We attempt to transition from  to  with transition probability:

Now, assume stationarity has been reached, meaning that the random variable

 satis�es .

E Π
π(x)

x y

q(x, y).

X P(X = x) = π(x)
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The out�ow from  to  in one step is the original probability  multiplied

by the transition probability :

x y π(x)
q(x, y)

π(x)q(x, y).
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The out�ow from  to  in one step is the original probability  multiplied

by the transition probability :

Conversely, the in�ow from  to  is:

x y π(x)
q(x, y)

π(x)q(x, y).

y x

π(y)q(y,x).
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Introducing Traffic Control

Let’s introduce some tra�c control measures. If the out�ow from  to  is

less than the in�ow from  to , that is,

then we don’t prevent the transition from  to .

On the other hand, if the out�ow from  to  is greater, we control the in�ow

and out�ow by allowing the transition with a probability of:

If the transition is not allowed, the process stays at .

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

x y

.
π(y)q(y,x)
π(x)q(x, y)

x
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If , we allow the transition from  to  without

restriction.

If , we allow the transition with probability

.

π(x)q(x, y) ≤ π(y)q(y,x) x y

π(x)q(x, y) > π(y)q(y,x)
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To summarize the two cases:

If , we allow the transition from  to  without

restriction.

If , we allow the transition with probability

.

This acceptance function  is the core idea behind the Metropolis

algorithm.

π(x)q(x, y) ≤ π(y)q(y,x) x y

π(x)q(x, y) > π(y)q(y,x)

α(x, y) = min{1, }π(y)q(y,x)
π(x)q(x,y)

α(x, y)
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Algorithm:

The Metropolis algorithm proceeds as follows:

1. Start from an initial value .

2. Propose a new state  by generating .

3. Draw .

4. If , move to , otherwise stay at .

x

y y ∼ Q(x, ⋅)

u ∼ U[0, 1]

u ≤ α(x, y) y x
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Reversiblity

The out�ow and in�ow becomes the same. A Markov chain with this

balance is called reversible. This prpoerty is the basis for the

Metropolis algorithm.

50 / 87



Reversiblity

The out�ow and in�ow becomes the same. A Markov chain with this

balance is called reversible. This prpoerty is the basis for the

Metropolis algorithm.

A Markov kernel  is called -reversible for a measure  if

are the same for any  and .

P(x, ⋅) Π Π

∫
A

Π(dx)P(x,B) = ∫
B

Π(dx)P(x,A)

A B

50 / 87



Reversiblity

The out�ow and in�ow becomes the same. A Markov chain with this

balance is called reversible. This prpoerty is the basis for the

Metropolis algorithm.

A Markov kernel  is called -reversible for a measure  if

are the same for any  and .

If  is a probability measure, then  is an invariant probability measure.

P(x, ⋅) Π Π

∫
A

Π(dx)P(x,B) = ∫
B

Π(dx)P(x,A)

A B

Π Π
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Summary

The Markov Chain Monte Carlo (MCMC) algorithm is a numerical method

for approximating integrals, leveraging the law of large numbers for

Markov chains.

The Metropolis algorithm, a core MCMC technique, relies on the principle

of reversibility.

The Metropolis algorithm operates by repeating a two-step process:

Propose a new state and then either Accept or Reject it.

51 / 87



2.2 Random Walk Metropolis
Algorithm

52 / 87



2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

52 / 87



2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

The most basic type of Metropolis algorithm is the random walk Metropolis

algorithm. In this method, a random step is proposed from the current state,

and the step is either accepted or rejected based on the acceptance ratio.

52 / 87



2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

The most basic type of Metropolis algorithm is the random walk Metropolis

algorithm. In this method, a random step is proposed from the current state,

and the step is either accepted or rejected based on the acceptance ratio.

Here’s an example of a random walk Metropolis algorithm in R:

52 / 87



2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

The most basic type of Metropolis algorithm is the random walk Metropolis

algorithm. In this method, a random step is proposed from the current state,

and the step is either accepted or rejected based on the acceptance ratio.

Here’s an example of a random walk Metropolis algorithm in R:

sd <- 0.25

target <- function(x) 1/(1 + x^2)

v <- numeric(1e2)

x <- runif(1)

for(i in 1:length(v)) {

  y <- x + sd * rnorm(1)

if(runif(1) < target(y)/target(x)) x <- y #<< Acceptance step

  v[i] <- x

}
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In this algorithm:

where  is a step size, and  is a random sample from the normal distribution.

y = x + σw, w ∼ N (0, Id),

σ w
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In this algorithm:

where  is a step size, and  is a random sample from the normal distribution.

If the new state  is accepted, it becomes the next state of the Markov chain;

otherwise, the chain remains at .

y = x + σw, w ∼ N (0, Id),

σ w

y
x
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Choice of  and dimensionality
The selection of the standard deviation in the random-walk

Metropolis algorithm has been widely discussed. In this section, we

focus on Roberts, Gelman and Gilks 97 , which provides valuable

insight into how to make this choice.
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Choice of  and dimensionality
The selection of the standard deviation in the random-walk

Metropolis algorithm has been widely discussed. In this section, we

focus on Roberts, Gelman and Gilks 97 , which provides valuable

insight into how to make this choice.

The Metropolis-Hastings algorithm is a�ected by the curse of

dimensionality, directly tied to the choice of the step size, .

Balancing out�ow and in�ow (reversibility), can introduce challenges for

the algorithm's e�ciency.

σ

σ
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Therefore, the probability of accepting a move is:

Due to reversibility, we have the following balance property:
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Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time  has been accepted.

Therefore, the probability of accepting a move is:

Due to reversibility, we have the following balance property:

Thus, the acceptance probability equals:

Denote the proposed state as , then the acceptance probability is less than:

(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

P(∥X0∥ ≠ ∥X1∥).

P(∥X0∥2 < ∥X1∥2) = P(∥X0∥2 > ∥X1∥2).

2 ⋅ P(∥X0∥2 > ∥X1∥2).

Y1

2 ⋅ P(∥X0∥2 > ∥Y1∥2).
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The proposed state is generated as follows:

Y1 = X0 + σW , W ∼ Nd(0,σId).
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The proposed state is generated as follows:

Then ...

where  follows a uniform distribution on the unit sphere.

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

= 2 ⋅ P(∥X0∥2 > ∥X0∥2 + 2σX⊤
0 W + σ2∥W∥2)

= 2 ⋅ P(−2σX⊤
0 W > σ2∥W∥2)

= 2 ⋅ P(−2X⊤
0 e > σ∥W∥),

e = W/∥W∥
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Dimensionality Effects

Assuming  and , unless , the

acceptance probability decreases quickly.

X⊤
0 e = O(1) ∥W∥ = O(d1/2) σ = O(d−1/2)
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Dimensionality Effects

Assuming  and , unless , the

acceptance probability decreases quickly.

Conversely, if , the algorithm cannot make large moves,

revealing the curse of dimensionality.

X⊤
0 e = O(1) ∥W∥ = O(d1/2) σ = O(d−1/2)

σ = O(d−1/2)
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Taking it Further

If  follows a -dimensional standard normal distribution, the right-hand side

becomes:

X0 d

2E [Φ(−σ∥W∥/2)] .
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Taking it Further

If  follows a -dimensional standard normal distribution, the right-hand side

becomes:

A useful performance measure for the random-walk Metropolis algorithm is the

expected squared jump distance (ESJD):

There are few reliable measures for assessing the performance of

MCMC methods. ESJD is sometimes used because it is relatively

straightforward to analyze theoretically. However, like many

performance metrics, the direct link between ESJD and actual

algorithm e�ciency remains unclear.

X0 d

2E [Φ(−σ∥W∥/2)] .

E [∥X1 −X0∥2] .
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ESJD can be simpli�ed as:

2E [∥X1 −X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .
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ESJD can be simpli�ed as:

This value is maximized when  takes a speci�c value. At this maximum,

the average acceptance probability is approximately 23.4% (treating  as

constant).

So we may use 23.4% ratio as a criterion of the choice of the tuning parameter

.

We initially assumed , meaning . However, this

assumption can be relaxed. Empirically, it is believed that this criterion is

relatively robust across di�erent settings.

2E [∥X1 −X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

= E [Φ(−σ∥W∥/2) ⋅ σ2∥W∥2] .

σ∥W∥
σ∥W∥

σ

X0 ∼ N (0, Id) Π = N (0, Id)
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Summary

The choice of the step size  is crucial for the performance of the algorithm. If

 is too large, the rejection rate increases. If  is too small, the proposed state

will be too close to the current one, leading to slow exploration.
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Summary

The choice of the step size  is crucial for the performance of the

algorithm. If  is too large, the rejection rate increases. If  is too small, the

proposed state will be too close to the current one, leading to slow

exploration.

This impact can be quanti�ed using the expected squared jump distance

(ESJD), a measure of how far the chain moves.

There is an optimal value of  that maximizes the ESJD. When this is

achieved, the average acceptance rate is approximately 23.4%.

σ
σ σ

σ
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3.1 Verify that

also satis�es the balance between in�ow and out�ow.

α(x, y) =
π(y) q(y,x)

π(x) q(x, y) + π(y) q(y,x)
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Exercise 3.

3.1 Verify that

also satis�es the balance between in�ow and out�ow.

3.2 Write a code (R, python etc.) for a random walk Metropolis algorithm for the

distribution .

3.3 Discuss the use of a heavy-tailed distribution as the law of  in terms of

the Expected Squared Jump Distance when the target distribution is standard

normal.

α(x, y) =
π(y) q(y,x)

π(x) q(x, y) + π(y) q(y,x)

π(x) ∝ 1
1+x2

W
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2.3 Preconditioned Crank-Nicolson
(pCN) and Gaussian perturbation

The pCN algorithm uses an autoregressive model as its proposal

mechanism. This approach is particularly e�ective when the target

distribution is a small perturbation of a normal distribution.

A variant of the Metropolis algorithm is the preconditioned Crank-Nicolson

(pCN) method, often used in Bayesian computation. This method is well-suited

for high-dimensional problems.

The proposed state in the pCN algorithm is given by:

where  is a tuning parameter.

y = ρx+ σ√1 − ρ2w, w ∼ N (0, Id),

ρ ∈ (−1, 1)
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Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

de�ned as:

where  is the prior distribution and  represents the log-likelihood.

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)
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Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is
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Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

de�ned as:

where  is the prior distribution and  represents the log-likelihood.

The goal is to compute the expectation of a function with respect to this

posterior distribution.

In typical Bayesian inverse problems, the parameter space is a high-

dimensional Euclidean space, with  being a normal distribution.

In this setting, the random-walk Metropolis algorithm tends to perform poorly.

But how does the pCN algorithm fare?

Assume  and let .

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

P(dθ)

P = N (0, 1) σ = 1
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Thanks to the autoregressive nature of the pCN model, the transition:

is reversible with respect to .

y = ρx+√1 − ρ2w, w ∼ N (0, Id),

N (0, Id)
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is reversible with respect to .

This means that only minimal tra�c control is required for ensuring stability.

Speci�cally, the acceptance probability is given by:

where  is the proposed state and  is the current state.

Even in high dimensions, sometimes this ratio tends to be stable, unlike the

behavior seen with the random-walk Metropolis algorithm.

y = ρx+√1 − ρ2w, w ∼ N (0, Id),

N (0, Id)

min {1, exp(l(θ∗) − l(θ))} ,

θ∗ θ
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Summary

The pCN algorithm is speci�cally designed for handling Gaussian

perturbations.
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Summary

The pCN algorithm is speci�cally designed for handling Gaussian

perturbations.

In high-dimensional settings, it often maintains a high acceptance

probability.

However, it's important to note that its performance deteriorates

signi�cantly when the target distribution deviates far from Gaussian. This

method is sometimes not robust.
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Exercise 4.

4.1 Verify that the acceptance ratio for the preconditioned Crank-Nicolson

algorithm, with the target distribution

is given by

Π(dx) ∝ exp(−U(x) − x2/2)dx

α(x, y) = min {1, exp(−U(y) + U(x))} .
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is given by

4.2 Write code (in R, Python, etc.) for the preconditioned Crank-Nicolson

algorithm targeting the distribution . Conclude that the

performance, although not mathematically de�ned, is worse compared to the

random walk Metropolis algorithm.

4.3 Discuss the reason behind this observation.

Π(dx) ∝ exp(−U(x) − x2/2)dx

α(x, y) = min {1, exp(−U(y) + U(x))} .

π(x) ∝ 1
1+x2
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From here, we'll explore non-reversible methods as an advanced

topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they o�er a broader range of options and

can enhance the e�ciency of certain sampling techniques.
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topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they o�er a broader range of options and

can enhance the e�ciency of certain sampling techniques.

Let’s now discuss the reversibility and non-reversibility in the Metropolis

algorithms.

Reversibility simpli�es algorithm design but can sometimes lead to ine�ciency.

In certain cases, the Markov chain spends too much time exploring the same

areas, leading to longer travel distances before covering the state space

adequately.
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Lifting

One way to introduce non-reversibility is through a technique called lifting,

which involves extending the state space.

In lifting, we introduce a velocity variable  and allow the chain to

switch directions at certain points.

For example, starting from , the algorithm can move to  if

the proposal is accepted. If rejected, it stays at .

v ∈ {−1,+1}

(x, +1) (x+ |w|, −1)
(x, +1)
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Lifting Visualization: Example by Gustafson 1996

Here’s an example of how lifting works in practice:
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Summary

Recall that the Metropolis algorithm is a two-step procedure: propose and

then accept or reject.

The lifting procedure works as follows:

If the proposal is accepted, the direction remains unchanged. If it is

rejected, the sign is reversed.

This method works well in one dimension. However, extending it to multiple

dimensions requires special care.
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72 / 87



Some recent progress in puctures (K., Song 2023)

Extending the previous method to the multidimensional case in a

more useful direction was challenging. Due to time constraints, we

present the recent results in pictures only.
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Multi-dim case:  (Autoregressive)Rd
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Multi-dim case:  (Beta-Gamma)Rd
+
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Exercise 5.

5.1 Write code (in R, Python, etc.) for the random walk Metropolis algorithm

with lifting with targeting the distribution . Plot a path and

compare it to that of the random walk Metropolis algorithm.

π(x) ∝ 1
1+x2
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3.2 Non-reversibility in continous time
Designing non-reversible methods has been challenging because it

requires balancing in�ow and out�ow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.
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Designing non-reversible methods has been challenging because it

requires balancing in�ow and out�ow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.

Recently, algorithms that operate in continuous time, such as the Zig-Zag

Sampler and Bouncy Particle Sampler, have gained attention.

These algorithms de�ne piecewise determinsitic Markov processes.

These methods remove the need to de�ne discrete-time steps and allow the

chain to move continuously through the state space.
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A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a di�usion term.
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A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a di�usion term.

This process has been highlighted in Monte Carlo literature, speci�cally in

Peters and de With 2012  and Michel et al. 2014 .

The PDMP is characterised by being non-reversible and distinct from

traditional Markov chain Monte Carlo (MCMC) methods, as it is a continuous-

time process.

Also PDMPs seem to be suitable for a sub-sampling implementation.
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PDMP triplet Davis1984

Let  be the state space. The triplet  consists of:

Flow: , where  and .

Conditional intensity: .

Jump size: , which is a Markov kernel.

E (φ,λ,Q)

(t,x) ↦ φt(x) φ0(x) = x φt(φs(x)) = φt+s(x)

λ(x) ≥ 0

Q(x,A)
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E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}
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This determines  up to time .

Next, we repeat the following for :

This determines .

1

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

n = 2, 3, 4,…

En ∼ E(1) ⇝ Tn = inf{t > Tn−1 : En ≤ ∫
t

Tn−1

λ(φs−Tn−1(x(Tn−1)))ds}
⇝ x(t) = φt−Tn−1(x(Tn−1)) (Tn−1 < t < Tn), x(Tn) ∼ Q(x(Tn−), ⋅)

x(t)

1 If  (i.e., if the process is non-explosive), then  is not de�ned

for .

P(supn Tn = ∞) ≠ 1 x(t)
t ∈ R+
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Example Bouncy particle sampler Peters and de With (2012)

The process is de�ned in .Rd × Rd

80 / 87



Example Bouncy particle sampler Peters and de With (2012)

The process is de�ned in .

We are interested in . Let .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

80 / 87



Example Bouncy particle sampler Peters and de With (2012)

The process is de�ned in .

We are interested in . Let .

: State variable

: Velocity vector

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

80 / 87



Example Bouncy particle sampler Peters and de With (2012)

The process is de�ned in .

We are interested in . Let .

: State variable

: Velocity vector

Flow:  �xed. .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

80 / 87



Example Bouncy particle sampler Peters and de With (2012)

The process is de�ned in .

We are interested in . Let .

: State variable

: Velocity vector

Flow:  �xed. .

There are are two souces of jumps:

Conditional intensity: .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

80 / 87



Example Bouncy particle sampler Peters and de With (2012)

The process is de�ned in .

We are interested in . Let .

: State variable

: Velocity vector

Flow:  �xed. .

There are are two souces of jumps:

Conditional intensity: .

Jump size:  �xed. .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

x v ↦ v− 2 × v⊤n(x) n(x)

80 / 87



Example Bouncy particle sampler Peters and de With (2012)

The process is de�ned in .

We are interested in . Let .

: State variable

: Velocity vector

Flow:  �xed. .

There are are two souces of jumps:

Conditional intensity: .

Jump size:  �xed. .

and

Conditional intensity: .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

x v ↦ v− 2 × v⊤n(x) n(x)

ρ

80 / 87



Example Bouncy particle sampler Peters and de With (2012)

The process is de�ned in .

We are interested in . Let .

: State variable

: Velocity vector

Flow:  �xed. .

There are are two souces of jumps:

Conditional intensity: .

Jump size:  �xed. .

and

Conditional intensity: .

Jump size:  �xed. .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

x v ↦ v− 2 × v⊤n(x) n(x)

ρ

x v ∼ N (0, Id)
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Here’s an example in three dimensions:
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Extended generator

A continuous Markov process is characterized by the short-term

behavior of the process. For a Markov process , this is

essentially the derivative of  with respect to  at

.

(Zt)
E[f(Zt) ∣ Z0 = z] t

t = 0
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Extended generator

A continuous Markov process is characterized by the short-term

behavior of the process. For a Markov process , this is

essentially the derivative of  with respect to  at

.

where  and , and  is

the refresh operator which changes the direction  randomly.

(Zt)
E[f(Zt) ∣ Z0 = z] t

t = 0

Lf(x, v) = v⊤∂xf(x, v) + (v⊤∇U(x))+ (B− id)f(x, v) + ρ (R− id)f(x, v)

Bf(x, v) = f(x,B(x)v) B(x)v = (I − 2n(x)n(x)⊤)v R
v
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Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)
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Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

The process is de�ned in .

Flow:  �xed. .

There are -sources of jumps:

Conditional intensity: .

Jump size:  �xed. Switch the sign of -th component of .

Rd × {−1,+1}d

v x′ = v

d

λi(x) = (vi∂iU(x))+

x i v
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Here’s an example of the Zig-Zag Sampler in three dimensions:
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Extended generator

State space .

where  and  switches the -th coordinate of .

Rd × {−1,+1}d

Lf(x, v) = v⊤∂xf(x, v) +
d

∑
i=1

(vi∂iU(x))+ (Fi − id)f(x, v)

Fif(x, v) = f(x,Fiv) Fi i v
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Scalable (I do not have enough time to explain this. )

(Anyway, ) Di�erent from MCMC

⇝
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RZigZag : Code: R, Algorithms: BPS, ZZ

PDSampler.jl : Code: Julia, Algorithms: BPS

ZigZagBoomerang : Code: Julia, Algorithms: BPS, ZZ, Boomerang

Additionally, check out the brand new pdmp-jax  by Charly Andral!
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https://alan-turing-institute.github.io/PDSampler.jl/v0.1/examples/ex_gbps1.html
https://github.com/mschauer/ZigZagBoomerang.jl
https://pypi.org/project/pdmp-jax/
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Summary

The ergodicity of Markov chains is demonstrated through non-singularity

and invariance.

Markov Chain Monte Carlo (MCMC) methods can approximate integrals,

and we understand both how to design them and why they converge.

As an advanced topic, we treat Continuous-time methods, such as the Zig-Zag

Sampler and Bouncy Particle Sampler.
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