
1. Ergodicity of Markov chains

2 / 87

1.1 Markov Chains

3 / 87

1.1 Markov Chains
A Markov chain is a sequence of random variables ,

which extends the concept of independent and identically

distributed variables.

X0,X1, …

3 / 87

1.1 Markov Chains
A Markov chain is a sequence of random variables ,

which extends the concept of independent and identically

distributed variables.

A sequence of random variables is called a Markov chain if there exists a

function such that, for each , the following holds:

Here, is called the Markov kernel.

X0,X1, …

P(x, ⋅) m = 0, 1, 2, …

P(Xm+1 ∈ A ∣ Xm = x) = P(x,A)

P(x, ⋅)

3 / 87

 represents a probability distribution for each .P(x, ⋅) x

4 / 87

 represents a probability distribution for each .

The probability that the next state will be in set , given the current state , is

expressed as:

P(x, ⋅) x

A x

P(x,A) = P(Xm+1 ∈ A ∣ Xm = x)

4 / 87

 represents a probability distribution for each .

The probability that the next state will be in set , given the current state , is

expressed as:

Similarly, the probability that the next-next state will be in set , given the

current state , is:

P(x, ⋅) x

A x

P(x,A) = P(Xm+1 ∈ A ∣ Xm = x)

A
x

P 2(x,A) = P(Xm+2 ∈ A ∣ Xm = x)

4 / 87

 represents a probability distribution for each .

The probability that the next state will be in set , given the current state , is

expressed as:

Similarly, the probability that the next-next state will be in set , given the

current state , is:

More generally, for any ,

P(x, ⋅) x

A x

P(x,A) = P(Xm+1 ∈ A ∣ Xm = x)

A
x

P 2(x,A) = P(Xm+2 ∈ A ∣ Xm = x)

n

P n(x,A) = P(Xm+n ∈ A ∣ Xm = x)

4 / 87

Two Types of Markov Chains

5 / 87

Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

5 / 87

Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

In the first type, the behavior (distribution) of remains dependent on the

initial value , even as becomes large.

Xm

X0 = x m

5 / 87

Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

In the first type, the behavior (distribution) of remains dependent on

the initial value , even as becomes large.

In the second type, this dependency diminishes over time.

Xm

X0 = x m

5 / 87

Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

In the first type, the behavior (distribution) of remains dependent on

the initial value , even as becomes large.

In the second type, this dependency diminishes over time.

The first type is called non-ergodic, while the second is ergodic.

Xm

X0 = x m

5 / 87

Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

In the first type, the behavior (distribution) of remains dependent on

the initial value , even as becomes large.

In the second type, this dependency diminishes over time.

The first type is called non-ergodic, while the second is ergodic.

Let’s focus on initial value dependency.

Xm

X0 = x m

5 / 87

1.2 Wright-Fisher Model

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .N

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .

You want to create a new jar by drawing stones from the original jar and

making copies of them in the new one.

N

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .

You want to create a new jar by drawing stones from the original jar and

making copies of them in the new one.

After you copy a stone, you put it back into the original jar, so nothing changes

there.

N

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .

You want to create a new jar by drawing stones from the original jar and

making copies of them in the new one.

After you copy a stone, you put it back into the original jar, so nothing changes

there.

You do this times, copying one stone each time.

N

N

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .

You want to create a new jar by drawing stones from the original jar and

making copies of them in the new one.

After you copy a stone, you put it back into the original jar, so nothing changes

there.

You do this times, copying one stone each time.

Once the new jar is filled, the original jar is thrown away, and the process starts

again.

N

N

6 / 87

Example

If (there are 10 stones total in the jar), and 3 of those stones are red,

the chance of picking a red stone on any given draw is .

N = 10
3/10 = 30%

7 / 87

Example

If (there are 10 stones total in the jar), and 3 of those stones are red,

the chance of picking a red stone on any given draw is .

The number of red stones in the new jar after drawing times is random but

follows a binomial distribution, which just means the outcome is based on

repeated trials of picking red stones with a certain probability. In this case, the

number of red stones in the new jar follows :

N = 10
3/10 = 30%

N

B(N , 0.3)

P(X = y) = ()(0.3)y(0.7)10−y10
y

7 / 87

Example

If (there are 10 stones total in the jar), and 3 of those stones are red,

the chance of picking a red stone on any given draw is .

The number of red stones in the new jar after drawing times is random but

follows a binomial distribution, which just means the outcome is based on

repeated trials of picking red stones with a certain probability. In this case, the

number of red stones in the new jar follows :

This gives the probability that the new jar will have exactly red stones, where

 is the binomial coefficient, a way of counting how many ways you can

choose red stones out of draws.

N = 10
3/10 = 30%

N

B(N , 0.3)

P(X = y) = ()(0.3)y(0.7)10−y10
y

y

()N
y

y N

7 / 87

The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

x
N − x

8 / 87

The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the first trial (creating the first new jar), the number of red stones in the new

jar is random and follows indenepdent draw from a binomial distribution

.

x
N − x

N
B(N ,x/N)

8 / 87

The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the first trial (creating the first new jar), the number of red stones in the new

jar is random and follows indenepdent draw from a binomial distribution

.

For each following trial, the same process happens: the number of red stones

in the new jar depends on how many red stones were in the previous jar.

x
N − x

N
B(N ,x/N)

8 / 87

The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the first trial (creating the first new jar), the number of red stones in the new

jar is random and follows indenepdent draw from a binomial distribution

.

For each following trial, the same process happens: the number of red stones

in the new jar depends on how many red stones were in the previous jar.

If there were red stones before, the number of red stones in the new jar still

follows a binomial distribution .

x
N − x

N
B(N ,x/N)

x
B(N ,x/N)

8 / 87

The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the first trial (creating the first new jar), the number of red stones in the new

jar is random and follows indenepdent draw from a binomial distribution

.

For each following trial, the same process happens: the number of red stones

in the new jar depends on how many red stones were in the previous jar.

If there were red stones before, the number of red stones in the new jar still

follows a binomial distribution .

This process, where the number of red stones in each new jar depends on the

number from the previous jar, is called the Wright-Fisher model.

x
N − x

N
B(N ,x/N)

x
B(N ,x/N)

8 / 87

Summary

You start with a jar containing red and blue stones.

9 / 87

Summary

You start with a jar containing red and blue stones.

You create a new jar by randomly copying stones from the original one, and

the number of red stones in the new jar is based on a binomial distribution.

9 / 87

Summary

You start with a jar containing red and blue stones.

You create a new jar by randomly copying stones from the original one, and

the number of red stones in the new jar is based on a binomial distribution.

After each trial, the new jar becomes the starting point for the next trial.

9 / 87

Summary

You start with a jar containing red and blue stones.

You create a new jar by randomly copying stones from the original one, and

the number of red stones in the new jar is based on a binomial distribution.

After each trial, the new jar becomes the starting point for the next trial.

The number of red stones in each new jar depends on how many red

stones were in the previous jar.

9 / 87

Let's experiment with this model for , starting with 45 red stones, over

25 trials:

N = 100

0 5 10 15 20 25
25

30

35

40

45

Wright-Fisher Model

Generation

A
lle

le
 F

re
qu

en
cy

10 / 87

Now, let's extend the experiment to 1000 trials. Note that the number of red

stones becomes 0 at some point, and once this happens, the number does not

change:

0 200 400 600 800 1000

0

20

40

60

80

100

Wright-Fisher Model

Generation

A
lle

le
 F

re
qu

en
cy

11 / 87

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Generation: 0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Wright-Fisher Model: Allele Frequency Distribution Over Generations

Allele Frequency

Pr
ob

ab
ili

ty

Play

12 / 87

When the number of red stones reaches either 0 or , it remains unchanged

thereafter.

N

13 / 87

When the number of red stones reaches either 0 or , it remains unchanged

thereafter.

A set like , from which the process cannot escape once entered, is called

an absorbing set.

N

{0,N}

13 / 87

When the number of red stones reaches either 0 or , it remains unchanged

thereafter.

A set like , from which the process cannot escape once entered, is called

an absorbing set.

In the Wright-Fisher model, the final state will end up in an absorbing set,

either 0 or , and the proportion of each is determined probabilistically based

on the initial number of red stones.

N

{0,N}

N

13 / 87

Exercises 1.

14 / 87

Exercises 1.

1.1 Evaluate and E[Xm+1 ∣ Xm = x] Var(Xm+1 ∣ Xm = x)

14 / 87

Exercises 1.

1.1 Evaluate and

1.2 Let be a positive integer, and let be an integer such that .

For the Wright-Fisher model, show that:

E[Xm+1 ∣ Xm = x] Var(Xm+1 ∣ Xm = x)

N x 0 ≤ x ≤ N

E[Xm+1(N − Xm+1) ∣ Xm = x] = (1 −)x(N − x).
1
N

14 / 87

Exercises 1.

1.1 Evaluate and

1.2 Let be a positive integer, and let be an integer such that .

For the Wright-Fisher model, show that:

1.3 From the above equation, conclude that converges in probability to or

 when .

E[Xm+1 ∣ Xm = x] Var(Xm+1 ∣ Xm = x)

N x 0 ≤ x ≤ N

E[Xm+1(N − Xm+1) ∣ Xm = x] = (1 −)x(N − x).
1
N

Xm 0
N m → ∞

14 / 87

1.3 Autoregressive Model

15 / 87

1.3 Autoregressive Model
A Markov chain defined by

where are independent, is called an autoregressive model.

Xm+1 = αXm + Wm+1, Wm+1 ∼ N (0,σ2),

W1,W2, …

15 / 87

1.3 Autoregressive Model
A Markov chain defined by

where are independent, is called an autoregressive model.

From this equation, we can derive:

Xm+1 = αXm + Wm+1, Wm+1 ∼ N (0,σ2),

W1,W2, …

Xm = αmX0 +
m−1

∑
n=0

αnWm−n.

15 / 87

Due to the reproductive property of normal distributions, we find that

follows a normal distribution:

Xm

Xm ∼ N (αmX0, σ2) ,
1 − α2m

1 − α2

16 / 87

Due to the reproductive property of normal distributions, we find that

follows a normal distribution:

and if ,

Xm

Xm ∼ N (αmX0, σ2) ,
1 − α2m

1 − α2

|α| < 1

Xm → N (0,) as m → ∞.
σ2

1 − α2

16 / 87

Due to the reproductive property of normal distributions, we find that

follows a normal distribution:

and if ,

The autoregressive model differs from the Wright-Fisher model in that the

limiting distribution does not depend on the initial value.

Xm

Xm ∼ N (αmX0, σ2) ,
1 − α2m

1 − α2

|α| < 1

Xm → N (0,) as m → ∞.
σ2

1 − α2

16 / 87

Example: Autoregressive Process

0 5 10 15 20 25

−5

−4

−3

−2

−1

0

1

Autoregressive (AR) Process

Step

Va
lu

e

17 / 87

0 200 400 600 800 1000

−6

−4

−2

0

2

4

6

8

Autoregressive (AR) Process

Step

Va
lu

e

18 / 87

−8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Step: 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Marginal Distribution of AR Process Over Time

Value

D
en

si
ty

Play

19 / 87

Summary

20 / 87

Summary

We introduced two types of Markov chains: the Wright-Fisher model and the

Autoregressive model.

20 / 87

Summary

We introduced two types of Markov chains: the Wright-Fisher model and

the Autoregressive model.

These two chains exhibit distinctly different behaviors.

20 / 87

Summary

We introduced two types of Markov chains: the Wright-Fisher model and

the Autoregressive model.

These two chains exhibit distinctly different behaviors.

In the Wright-Fisher model, the marginal distribution remains influenced by

the initial state, even after a large number of iterations.

20 / 87

Summary

We introduced two types of Markov chains: the Wright-Fisher model and

the Autoregressive model.

These two chains exhibit distinctly different behaviors.

In the Wright-Fisher model, the marginal distribution remains influenced by

the initial state, even after a large number of iterations.

In contrast, the Autoregressive model shows diminishing dependence on

the initial state as the number of iterations increases, with the system

gradually stabilizing.

20 / 87

Summary

We introduced two types of Markov chains: the Wright-Fisher model and

the Autoregressive model.

These two chains exhibit distinctly different behaviors.

In the Wright-Fisher model, the marginal distribution remains influenced by

the initial state, even after a large number of iterations.

In contrast, the Autoregressive model shows diminishing dependence on

the initial state as the number of iterations increases, with the system

gradually stabilizing.

Let’s continue with a more detailed explanation of ergodicity and the concepts

involved in the behavior of Markov chains.

20 / 87

1.4 Ergodicity Explained

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic behavior).

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic

behavior).

One where the influence diminishes (ergodic behavior).

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic

behavior).

One where the influence diminishes (ergodic behavior).

To explain these differences in more details, we need to introduce three

important terms:

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic

behavior).

One where the influence diminishes (ergodic behavior).

To explain these differences in more details, we need to introduce three

important terms:

1. Invariant Probability Measure

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic

behavior).

One where the influence diminishes (ergodic behavior).

To explain these differences in more details, we need to introduce three

important terms:

1. Invariant Probability Measure

2. Singularity

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic

behavior).

One where the influence diminishes (ergodic behavior).

To explain these differences in more details, we need to introduce three

important terms:

1. Invariant Probability Measure

2. Singularity

3. Total Variation

21 / 87

Invariant Probability Measure

22 / 87

Invariant Probability Measure

An invariant probability measure is a measure that remains

unchanged under the transition induced by a Markov kernel. It

serves as the limiting measure of an ergodic Markov chain. However,

the converse does not hold true.

22 / 87

Invariant Probability Measure

An invariant probability measure is a measure that remains

unchanged under the transition induced by a Markov kernel. It

serves as the limiting measure of an ergodic Markov chain. However,

the converse does not hold true.

If a Markov chain is ergodic, as in the case of the autoregressive model where

, there exists a limiting distribution for , denoted by .|α| < 1 Xm Π

22 / 87

Invariant Probability Measure

An invariant probability measure is a measure that remains

unchanged under the transition induced by a Markov kernel. It

serves as the limiting measure of an ergodic Markov chain. However,

the converse does not hold true.

If a Markov chain is ergodic, as in the case of the autoregressive model where

, there exists a limiting distribution for , denoted by .

If , then must also hold. A probability distribution that

satisfies this property is called an invariant probability measure.

|α| < 1 Xm Π

X0 ∼ Π X1 ∼ Π Π

22 / 87

Singularity

23 / 87

Singularity

Probability measures are said to be mutually singular if they are

entirely distinct. We will assume that the Markov chains starting

from different points are not mutually singular, ensuring that the

chains mix well.

23 / 87

Singularity

Probability measures are said to be mutually singular if they are

entirely distinct. We will assume that the Markov chains starting

from different points are not mutually singular, ensuring that the

chains mix well.

Two probability distributions and are said to be mutually singular if there

exists a set such that:

P Q
A

P(A) = 0 and Q(Ac) = 0.

23 / 87

Singularity

Probability measures are said to be mutually singular if they are

entirely distinct. We will assume that the Markov chains starting

from different points are not mutually singular, ensuring that the

chains mix well.

Two probability distributions and are said to be mutually singular if there

exists a set such that:

In this case, we write . If and are not mutually singular, we write

.

P Q
A

P(A) = 0 and Q(Ac) = 0.

P ⊥ Q P Q
P ⊥/Q

23 / 87

Let’s visualize this property on the next page using the overlapping areas of two

probability density functions.

24 / 87

Let’s visualize this property on the next page using the overlapping areas of two

probability density functions.

If there is a shared red region under both probability density functions, then

. If no such region exists, then .P ⊥/Q P ⊥ Q

24 / 8725 / 87

Total Variation

26 / 87

Total Variation

Total variation distance measures the difference between two

probability distributions. It can be visualized as the area between the

two probability density functions.

26 / 87

Total Variation

Total variation distance measures the difference between two

probability distributions. It can be visualized as the area between the

two probability density functions.

We define the total variation distance between two probability distributions

and as:

P
Q

∥P − Q∥TV = ∫
E

|p(x) − q(x)| dx.

26 / 87

Total Variation

Total variation distance measures the difference between two

probability distributions. It can be visualized as the area between the

two probability density functions.

We define the total variation distance between two probability distributions

and as:

This measures the difference between the probability density functions

and .

P
Q

∥P − Q∥TV = ∫
E

|p(x) − q(x)| dx.

p(x)
q(x)

26 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

∥P − Q∥TV = Blue Region + Green Region.

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

∥P − Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

∥P − Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

Thus, the areas of the blue and green regions are equal:

∥P − Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

Blue Region = Green Region = ∥P − Q∥TV.
1
2

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

Thus, the areas of the blue and green regions are equal:

Hence, the area of the red region is:

If , the area of the red region is 0, meaning that , and

conversely, if , then .

∥P − Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

Blue Region = Green Region = ∥P − Q∥TV.
1
2

Red Region = 1 − ∥P − Q∥TV.
1
2

P ⊥ Q ∥P − Q∥TV = 2
P ⊥/Q ∥P − Q∥TV < 2

27 / 87

Summary

28 / 87

Summary

An invariant probability measure is a measure that remains unchanged

under the transition dynamics of a Markov chain.

28 / 87

Summary

An invariant probability measure is a measure that remains unchanged

under the transition dynamics of a Markov chain.

If the red region of the graph is zero, we say that the two probability

measures are mutually singular.

28 / 87

Summary

An invariant probability measure is a measure that remains unchanged

under the transition dynamics of a Markov chain.

If the red region of the graph is zero, we say that the two probability

measures are mutually singular.

This red region can be expressed as , where

 is the total variation distance between the measures and .

1 − ∥P − Q∥TV/2
∥P − Q∥TV P Q

28 / 87

Exercise 2.

2.1 For a real number , find the total variation distance

.

μ
∥N (0, 1) − N (μ, 1)∥TV

29 / 87

Exercise 2.

2.1 For a real number , find the total variation distance

.

2.2 For a real number , find the total variation distance

.

μ
∥N (0, 1) − N (μ, 1)∥TV

σ > 0
∥N (0, 1) − N (0,σ2)∥TV

29 / 87

Exercise 2.

2.1 For a real number , find the total variation distance

.

2.2 For a real number , find the total variation distance

.

2.3 Prove that no invariant probability measure exists for the Autoregressive

model when . (Hint: Evaluate the characteristic function. Recall that every

characteristic function satisfies and is continuous at .)

μ
∥N (0, 1) − N (μ, 1)∥TV

σ > 0
∥N (0, 1) − N (0,σ2)∥TV

α = 1
ψ(u) ψ(0) = 1 u = 0

29 / 87

1.5 Theorem (The law of large
numbers):

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .x y P(x, ⋅) ⊥/ P(y, ⋅)

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .

Further, suppose there exists an invariant probability distribution .

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .

Further, suppose there exists an invariant probability distribution .

Then, for almost all points and sets :

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

x A

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .

Further, suppose there exists an invariant probability distribution .

Then, for almost all points and sets :

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

x A

P m(x,A) ⟶m→∞ Π(A).

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .

Further, suppose there exists an invariant probability distribution .

Then, for almost all points and sets :

Moreover, if , the law of large numbers holds:

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

x A

P m(x,A) ⟶m→∞ Π(A).

X0 = x

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .

Further, suppose there exists an invariant probability distribution .

Then, for almost all points and sets :

Moreover, if , the law of large numbers holds:

as long as the right-hand side exists.

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

x A

P m(x,A) ⟶m→∞ Π(A).

X0 = x

M−1

∑
m=0

f(Xm) ⟶M→∞ ∫ f(x)Π(dx),
1
M

30 / 87

Proof Outline:

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:P(x, ⋅) P(y, ⋅)

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2, …
P n(x, ⋅) P n(y, ⋅) n

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

The proof concludes when the red region occupies 100% of the area, meaning

that and coincide completely as .

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2, …
P n(x, ⋅) P n(y, ⋅) n

P n(x, ⋅) P n(y, ⋅) n → ∞

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

The proof concludes when the red region occupies 100% of the area, meaning

that and coincide completely as .

It is easy to see that this limiting distribution matches .

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2, …
P n(x, ⋅) P n(y, ⋅) n

P n(x, ⋅) P n(y, ⋅) n → ∞

Π

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

The proof concludes when the red region occupies 100% of the area, meaning

that and coincide completely as .

It is easy to see that this limiting distribution matches .

Technically, it is not easy to directly observe the total variation

distance. The coupling technique is a useful method for estimating

the quantity, and we will briefly discuss it.

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2, …
P n(x, ⋅) P n(y, ⋅) n

P n(x, ⋅) P n(y, ⋅) n → ∞

Π

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

The proof concludes when the red region occupies 100% of the area, meaning

that and coincide completely as .

It is easy to see that this limiting distribution matches .

Technically, it is not easy to directly observe the total variation

distance. The coupling technique is a useful method for estimating

the quantity, and we will briefly discuss it.

For more details, see "Kulik (2017)" Theorem 2.5.1.

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2, …
P n(x, ⋅) P n(y, ⋅) n

P n(x, ⋅) P n(y, ⋅) n → ∞

Π

31 / 87

1.6 Coupling

32 / 87

1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

32 / 87

1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

Consider two continuous probability distributions and on the real line.P Q

32 / 87

1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

Consider two continuous probability distributions and on the real line.

If and are independent and distributed according to and ,

respectively, then:

P Q

X Y P Q

P(X = Y) = 0,

32 / 87

1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

Consider two continuous probability distributions and on the real line.

If and are independent and distributed according to and ,

respectively, then:

even if and are very close or even identical.

P Q

X Y P Q

P(X = Y) = 0,

P Q

32 / 87

1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

Consider two continuous probability distributions and on the real line.

If and are independent and distributed according to and ,

respectively, then:

even if and are very close or even identical.

However, with coupling, we can construct the pair in such a way that

we increase the probability or reduce the difference .

P Q

X Y P Q

P(X = Y) = 0,

P Q

(X,Y)
P(X = Y) |X − Y |

32 / 87

Coupling (continued)

Coupling is a method for constructing a pair , where and

, in such a way that we increase the probability or make

 smaller.

In Markov chain convergence theory, optimal coupling plays an important

role. Optimal coupling maximizes , which is beneficial for proving

convergence.

(X,Y) X ∼ P

Y ∼ Q P(X = Y)
|X − Y |

P(X = Y)

33 / 87

Imagine we have 100 German and 100 Japanese male Judo players (Judoka).

Our goal is to pair them by matching those in the same weight class. Ideally, we

want to create as many matches where the weight classes of the players,

and , are identical, meaning .

X
Y X = Y

The beautiful image was shared by Joshua Jamias on Unsplash

34 / 87

However, even with careful pairing, there’s a limit to the number of same-class

matches we can create.

35 / 87

However, even with careful pairing, there’s a limit to the number of same-class

matches we can create.

For example:

If there are 3 German and 5 Japanese players in the under-66 kg weight class,

the maximum number of same-class matches is 3.

If there are 6 German and 2 Japanese players in the 81 kg weight class, the

maximum number of same-class matches is 2.

35 / 87

However, even with careful pairing, there’s a limit to the number of same-class

matches we can create.

For example:

If there are 3 German and 5 Japanese players in the under-66 kg weight class,

the maximum number of same-class matches is 3.

If there are 6 German and 2 Japanese players in the 81 kg weight class, the

maximum number of same-class matches is 2.

Therefore, the total number of same-class matches is determined by the

smaller number of players from each group in every weight class. Any

remaining players will participate in mixed-class matches, where .X ≠ Y

35 / 87

The proportion of same-class matches corresponds to the red region in the

plot, representing the overlap of the probability densities.

36 / 87

The proportion of same-class matches corresponds to the red region in the

plot, representing the overlap of the probability densities.

Mathematically, when two distributions and are coupled, the maximum

probability of forming a match is:

This coupling, which achieves this maximum probability, is called optimal

coupling.

P Q
X = Y

P(X = Y) = 1 − ∥P − Q∥TV.
1
2

36 / 87

Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from different initial values and .x0 y0

37 / 87

Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from different initial values and .

From the initial values, we generate the next states using coupling:

x0 y0

(X1,Y1)

P(x0, ⋅),P(y0, ⋅).

37 / 87

Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from different initial values and .

From the initial values, we generate the next states using coupling:

From these new states , we generate the next pair

 using coupling:

x0 y0

(X1,Y1)

P(x0, ⋅),P(y0, ⋅).

(X1 = x1,Y1 = y1)
(X2,Y2)

P(x1, ⋅),P(y1, ⋅).

37 / 87

Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from different initial values and .

From the initial values, we generate the next states using coupling:

From these new states , we generate the next pair

 using coupling:

This process is repeated indefinitely.

x0 y0

(X1,Y1)

P(x0, ⋅),P(y0, ⋅).

(X1 = x1,Y1 = y1)
(X2,Y2)

P(x1, ⋅),P(y1, ⋅).

37 / 87

Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from different initial values and .

From the initial values, we generate the next states using coupling:

From these new states , we generate the next pair

 using coupling:

This process is repeated indefinitely.

Once , they remain coupled for all future steps.

x0 y0

(X1,Y1)

P(x0, ⋅),P(y0, ⋅).

(X1 = x1,Y1 = y1)
(X2,Y2)

P(x1, ⋅),P(y1, ⋅).

Xm = Ym

37 / 87

The inequality

is always true.

P(Xm = Ym) ≤ 1 − ∥P m(x, ⋅) − P m(y, ⋅)∥TV.
1
2

38 / 87

The inequality

is always true.

Through coupling, the left-hand side provides a good bound of the right-hand

side, and is easier to estimate.

P(Xm = Ym) ≤ 1 − ∥P m(x, ⋅) − P m(y, ⋅)∥TV.
1
2

38 / 87

Coupling Before and After

Before coupling (left side of the plot):

39 / 87

After coupling (right side of the plot):

40 / 87

Summary

41 / 87

Summary

The law of large numbers applies to Markov chains as well.

41 / 87

Summary

The law of large numbers applies to Markov chains as well.

A sufficient condition for this is that and are not mutually

singular, and that an invariant probability measure exists.

P(x, ⋅) P(y, ⋅)

41 / 87

Summary

The law of large numbers applies to Markov chains as well.

A sufficient condition for this is that and are not mutually

singular, and that an invariant probability measure exists.

Coupling is a powerful technique used to establish the law of large

numbers in Markov chains.

P(x, ⋅) P(y, ⋅)

41 / 87

From here ...

42 / 87

From here ...

We introduced the law of large numbers for Markov chains.

42 / 87

From here ...

We introduced the law of large numbers for Markov chains.

From here, we will introduce a Monte Carlo method using the theorem.

42 / 87

2. Markov chain Monte Carlo

43 / 87

2. Markov chain Monte Carlo
The Markov Chain Monte Carlo (MCMC) method is a powerful

numerical technique used to approximate expectations by

leveraging the law of large numbers of Markov chains. It generates

samples from a target distribution by constructing a Markov chain

that converges to this distribution, allowing for the estimation of

complex integrals or probabilistic quantities that are otherwise

intractable

43 / 87

2.1 Metropolis Algorithm

44 / 87

2.1 Metropolis Algorithm
The Metropolis algorithm is a core component of MCMC, which

constructs a reversible Markov chain to sample from a target

distribution.

44 / 87

2.1 Metropolis Algorithm
The Metropolis algorithm is a core component of MCMC, which

constructs a reversible Markov chain to sample from a target

distribution.

Let the state space be a discrete set, and let be the probability distribution

of interest, with probability function .

E Π
π(x)

44 / 87

2.1 Metropolis Algorithm
The Metropolis algorithm is a core component of MCMC, which

constructs a reversible Markov chain to sample from a target

distribution.

Let the state space be a discrete set, and let be the probability distribution

of interest, with probability function .

We attempt to transition from to with transition probability:

E Π
π(x)

x y

q(x, y).

44 / 87

2.1 Metropolis Algorithm
The Metropolis algorithm is a core component of MCMC, which

constructs a reversible Markov chain to sample from a target

distribution.

Let the state space be a discrete set, and let be the probability distribution

of interest, with probability function .

We attempt to transition from to with transition probability:

Now, assume stationarity has been reached, meaning that the random variable

 satisfies .

E Π
π(x)

x y

q(x, y).

X P(X = x) = π(x)

44 / 87

The outflow from to in one step is the original probability multiplied

by the transition probability :

x y π(x)
q(x, y)

π(x)q(x, y).

45 / 87

The outflow from to in one step is the original probability multiplied

by the transition probability :

Conversely, the inflow from to is:

x y π(x)
q(x, y)

π(x)q(x, y).

y x

π(y)q(y,x).

45 / 87

Introducing Traffic Control

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

x y
y x

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

x y
y x

π(x)q(x, y) < π(y)q(y,x),

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

then we don’t prevent the transition from to .

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

then we don’t prevent the transition from to .

On the other hand, if the outflow from to is greater, we control the inflow

and outflow by allowing the transition with a probability of:

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

x y

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

then we don’t prevent the transition from to .

On the other hand, if the outflow from to is greater, we control the inflow

and outflow by allowing the transition with a probability of:

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

x y

.
π(y)q(y,x)
π(x)q(x, y)

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

then we don’t prevent the transition from to .

On the other hand, if the outflow from to is greater, we control the inflow

and outflow by allowing the transition with a probability of:

If the transition is not allowed, the process stays at .

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

x y

.
π(y)q(y,x)
π(x)q(x, y)

x

46 / 87

To summarize the two cases:

47 / 87

To summarize the two cases:

If , we allow the transition from to without

restriction.

π(x)q(x, y) ≤ π(y)q(y,x) x y

47 / 87

To summarize the two cases:

If , we allow the transition from to without

restriction.

If , we allow the transition with probability

.

π(x)q(x, y) ≤ π(y)q(y,x) x y

π(x)q(x, y) > π(y)q(y,x)

α(x, y) = min{1, }π(y)q(y,x)
π(x)q(x,y)

47 / 87

To summarize the two cases:

If , we allow the transition from to without

restriction.

If , we allow the transition with probability

.

This acceptance function is the core idea behind the Metropolis

algorithm.

π(x)q(x, y) ≤ π(y)q(y,x) x y

π(x)q(x, y) > π(y)q(y,x)

α(x, y) = min{1, }π(y)q(y,x)
π(x)q(x,y)

α(x, y)

47 / 87

Algorithm:

48 / 87

Algorithm:

The Metropolis algorithm proceeds as follows:

48 / 87

Algorithm:

The Metropolis algorithm proceeds as follows:

1. Start from an initial value .x

48 / 87

Algorithm:

The Metropolis algorithm proceeds as follows:

1. Start from an initial value .

2. Propose a new state by generating .

x

y y ∼ Q(x, ⋅)

48 / 87

Algorithm:

The Metropolis algorithm proceeds as follows:

1. Start from an initial value .

2. Propose a new state by generating .

3. Draw .

x

y y ∼ Q(x, ⋅)

u ∼ U[0, 1]

48 / 87

Algorithm:

The Metropolis algorithm proceeds as follows:

1. Start from an initial value .

2. Propose a new state by generating .

3. Draw .

4. If , move to , otherwise stay at .

x

y y ∼ Q(x, ⋅)

u ∼ U[0, 1]

u ≤ α(x, y) y x

48 / 87

10 20 30 40 50

−3

−2

−1

0

1

2

3

4

Iterations

S
ta

te
 V

al
ue

49 / 87

Reversiblity

The outflow and inflow becomes the same. A Markov chain with this

balance is called reversible. This prpoerty is the basis for the

Metropolis algorithm.

50 / 87

Reversiblity

The outflow and inflow becomes the same. A Markov chain with this

balance is called reversible. This prpoerty is the basis for the

Metropolis algorithm.

A Markov kernel is called -reversible for a measure if

are the same for any and .

P(x, ⋅) Π Π

∫
A

Π(dx)P(x,B) = ∫
B

Π(dx)P(x,A)

A B

50 / 87

Reversiblity

The outflow and inflow becomes the same. A Markov chain with this

balance is called reversible. This prpoerty is the basis for the

Metropolis algorithm.

A Markov kernel is called -reversible for a measure if

are the same for any and .

If is a probability measure, then is an invariant probability measure.

P(x, ⋅) Π Π

∫
A

Π(dx)P(x,B) = ∫
B

Π(dx)P(x,A)

A B

Π Π

50 / 87

Summary

51 / 87

Summary

The Markov Chain Monte Carlo (MCMC) algorithm is a numerical method for

approximating integrals, leveraging the law of large numbers for Markov

chains.

51 / 87

Summary

The Markov Chain Monte Carlo (MCMC) algorithm is a numerical method

for approximating integrals, leveraging the law of large numbers for

Markov chains.

The Metropolis algorithm, a core MCMC technique, relies on the principle

of reversibility.

51 / 87

Summary

The Markov Chain Monte Carlo (MCMC) algorithm is a numerical method

for approximating integrals, leveraging the law of large numbers for

Markov chains.

The Metropolis algorithm, a core MCMC technique, relies on the principle

of reversibility.

The Metropolis algorithm operates by repeating a two-step process:

Propose a new state and then either Accept or Reject it.

51 / 87

2.2 Random Walk Metropolis
Algorithm

52 / 87

2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

52 / 87

2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

The most basic type of Metropolis algorithm is the random walk Metropolis

algorithm. In this method, a random step is proposed from the current state,

and the step is either accepted or rejected based on the acceptance ratio.

52 / 87

2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

The most basic type of Metropolis algorithm is the random walk Metropolis

algorithm. In this method, a random step is proposed from the current state,

and the step is either accepted or rejected based on the acceptance ratio.

Here’s an example of a random walk Metropolis algorithm in R:

52 / 87

2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

The most basic type of Metropolis algorithm is the random walk Metropolis

algorithm. In this method, a random step is proposed from the current state,

and the step is either accepted or rejected based on the acceptance ratio.

Here’s an example of a random walk Metropolis algorithm in R:

sd <- 0.25

target <- function(x) 1/(1 + x^2)

v <- numeric(1e2)

x <- runif(1)

for(i in 1:length(v)) {

 y <- x + sd * rnorm(1)

if(runif(1) < target(y)/target(x)) x <- y #<< Acceptance step

 v[i] <- x

}
52 / 87

In this algorithm:

where is a step size, and is a random sample from the normal distribution.

y = x + σw, w ∼ N (0, Id),

σ w

53 / 87

In this algorithm:

where is a step size, and is a random sample from the normal distribution.

If the new state is accepted, it becomes the next state of the Markov chain;

otherwise, the chain remains at .

y = x + σw, w ∼ N (0, Id),

σ w

y
x

53 / 87

Choice of and dimensionalityσ

54 / 87

Choice of and dimensionality
The selection of the standard deviation in the random-walk

Metropolis algorithm has been widely discussed. In this section, we

focus on Roberts, Gelman and Gilks 97 , which provides valuable

insight into how to make this choice.

σ

54 / 87

Choice of and dimensionality
The selection of the standard deviation in the random-walk

Metropolis algorithm has been widely discussed. In this section, we

focus on Roberts, Gelman and Gilks 97 , which provides valuable

insight into how to make this choice.

The Metropolis-Hastings algorithm is affected by the curse of

dimensionality, directly tied to the choice of the step size, .

σ

σ

54 / 87

Choice of and dimensionality
The selection of the standard deviation in the random-walk

Metropolis algorithm has been widely discussed. In this section, we

focus on Roberts, Gelman and Gilks 97 , which provides valuable

insight into how to make this choice.

The Metropolis-Hastings algorithm is affected by the curse of

dimensionality, directly tied to the choice of the step size, .

Balancing outflow and inflow (reversibility), can introduce challenges for

the algorithm's efficiency.

σ

σ

54 / 87

Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time has been accepted.(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

55 / 87

Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time has been accepted.

Therefore, the probability of accepting a move is:

(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

P(∥X0∥ ≠ ∥X1∥).

55 / 87

Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time has been accepted.

Therefore, the probability of accepting a move is:

Due to reversibility, we have the following balance property:

(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

P(∥X0∥ ≠ ∥X1∥).

P(∥X0∥2 < ∥X1∥2) = P(∥X0∥2 > ∥X1∥2).

55 / 87

Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time has been accepted.

Therefore, the probability of accepting a move is:

Due to reversibility, we have the following balance property:

Thus, the acceptance probability equals:

(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

P(∥X0∥ ≠ ∥X1∥).

P(∥X0∥2 < ∥X1∥2) = P(∥X0∥2 > ∥X1∥2).

2 ⋅ P(∥X0∥2 > ∥X1∥2).

55 / 87

Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time has been accepted.

Therefore, the probability of accepting a move is:

Due to reversibility, we have the following balance property:

Thus, the acceptance probability equals:

Denote the proposed state as , then the acceptance probability is less than:

(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

P(∥X0∥ ≠ ∥X1∥).

P(∥X0∥2 < ∥X1∥2) = P(∥X0∥2 > ∥X1∥2).

2 ⋅ P(∥X0∥2 > ∥X1∥2).

Y1

2 ⋅ P(∥X0∥2 > ∥Y1∥2).

55 / 87

The proposed state is generated as follows:

Y1 = X0 + σW , W ∼ Nd(0,σId).

56 / 87

The proposed state is generated as follows:

Then ...

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

56 / 87

The proposed state is generated as follows:

Then ...

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

= 2 ⋅ P(∥X0∥2 > ∥X0∥2 + 2σX⊤
0 W + σ2∥W∥2)

56 / 87

The proposed state is generated as follows:

Then ...

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

= 2 ⋅ P(∥X0∥2 > ∥X0∥2 + 2σX⊤
0 W + σ2∥W∥2)

= 2 ⋅ P(−2σX⊤
0 W > σ2∥W∥2)

56 / 87

The proposed state is generated as follows:

Then ...

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

= 2 ⋅ P(∥X0∥2 > ∥X0∥2 + 2σX⊤
0 W + σ2∥W∥2)

= 2 ⋅ P(−2σX⊤
0 W > σ2∥W∥2)

= 2 ⋅ P(−2X⊤
0 e > σ∥W∥),

56 / 87

The proposed state is generated as follows:

Then ...

where follows a uniform distribution on the unit sphere.

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

= 2 ⋅ P(∥X0∥2 > ∥X0∥2 + 2σX⊤
0 W + σ2∥W∥2)

= 2 ⋅ P(−2σX⊤
0 W > σ2∥W∥2)

= 2 ⋅ P(−2X⊤
0 e > σ∥W∥),

e = W/∥W∥

56 / 87

Dimensionality Effects

Assuming and , unless , the

acceptance probability decreases quickly.

X⊤
0 e = O(1) ∥W∥ = O(d1/2) σ = O(d−1/2)

57 / 87

Dimensionality Effects

Assuming and , unless , the

acceptance probability decreases quickly.

Conversely, if , the algorithm cannot make large moves,

revealing the curse of dimensionality.

X⊤
0 e = O(1) ∥W∥ = O(d1/2) σ = O(d−1/2)

σ = O(d−1/2)

57 / 87

Taking it Further

If follows a -dimensional standard normal distribution, the right-hand side

becomes:

X0 d

2E [Φ(−σ∥W∥/2)] .

58 / 87

Taking it Further

If follows a -dimensional standard normal distribution, the right-hand side

becomes:

A useful performance measure for the random-walk Metropolis algorithm is the

expected squared jump distance (ESJD):

There are few reliable measures for assessing the performance of

MCMC methods. ESJD is sometimes used because it is relatively

straightforward to analyze theoretically. However, like many

performance metrics, the direct link between ESJD and actual

algorithm efficiency remains unclear.

X0 d

2E [Φ(−σ∥W∥/2)] .

E [∥X1 − X0∥2] .

58 / 87

ESJD can be simplified as:

2E [∥X1 − X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

59 / 87

ESJD can be simplified as:

2E [∥X1 − X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

= E [Φ(−σ∥W∥/2) ⋅ σ2∥W∥2] .

59 / 87

ESJD can be simplified as:

This value is maximized when takes a specific value. At this maximum,

the average acceptance probability is approximately 23.4% (treating as

constant).

2E [∥X1 − X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

= E [Φ(−σ∥W∥/2) ⋅ σ2∥W∥2] .

σ∥W∥
σ∥W∥

59 / 87

ESJD can be simplified as:

This value is maximized when takes a specific value. At this maximum,

the average acceptance probability is approximately 23.4% (treating as

constant).

So we may use 23.4% ratio as a criterion of the choice of the tuning parameter

.

2E [∥X1 − X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

= E [Φ(−σ∥W∥/2) ⋅ σ2∥W∥2] .

σ∥W∥
σ∥W∥

σ

59 / 87

ESJD can be simplified as:

This value is maximized when takes a specific value. At this maximum,

the average acceptance probability is approximately 23.4% (treating as

constant).

So we may use 23.4% ratio as a criterion of the choice of the tuning parameter

.

We initially assumed , meaning . However, this

assumption can be relaxed. Empirically, it is believed that this criterion is

relatively robust across different settings.

2E [∥X1 − X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

= E [Φ(−σ∥W∥/2) ⋅ σ2∥W∥2] .

σ∥W∥
σ∥W∥

σ

X0 ∼ N (0, Id) Π = N (0, Id)

59 / 87

Summary

60 / 87

Summary

The choice of the step size is crucial for the performance of the algorithm. If

 is too large, the rejection rate increases. If is too small, the proposed state

will be too close to the current one, leading to slow exploration.

σ
σ σ

60 / 87

Summary

The choice of the step size is crucial for the performance of the

algorithm. If is too large, the rejection rate increases. If is too small, the

proposed state will be too close to the current one, leading to slow

exploration.

This impact can be quantified using the expected squared jump distance

(ESJD), a measure of how far the chain moves.

σ
σ σ

60 / 87

Summary

The choice of the step size is crucial for the performance of the

algorithm. If is too large, the rejection rate increases. If is too small, the

proposed state will be too close to the current one, leading to slow

exploration.

This impact can be quantified using the expected squared jump distance

(ESJD), a measure of how far the chain moves.

There is an optimal value of that maximizes the ESJD. When this is

achieved, the average acceptance rate is approximately 23.4%.

σ
σ σ

σ

60 / 87

Exercise 3.

61 / 87

Exercise 3.

3.1 Verify that

also satisfies the balance between inflow and outflow.

α(x, y) =
π(y) q(y,x)

π(x) q(x, y) + π(y) q(y,x)

61 / 87

Exercise 3.

3.1 Verify that

also satisfies the balance between inflow and outflow.

3.2 Write a code (R, python etc.) for a random walk Metropolis algorithm for the

distribution .

α(x, y) =
π(y) q(y,x)

π(x) q(x, y) + π(y) q(y,x)

π(x) ∝ 1
1+x2

61 / 87

Exercise 3.

3.1 Verify that

also satisfies the balance between inflow and outflow.

3.2 Write a code (R, python etc.) for a random walk Metropolis algorithm for the

distribution .

3.3 Discuss the use of a heavy-tailed distribution as the law of in terms of

the Expected Squared Jump Distance when the target distribution is standard

normal.

α(x, y) =
π(y) q(y,x)

π(x) q(x, y) + π(y) q(y,x)

π(x) ∝ 1
1+x2

W

61 / 87

2.3 Preconditioned Crank-Nicolson
(pCN) and Gaussian perturbation

62 / 87

2.3 Preconditioned Crank-Nicolson
(pCN) and Gaussian perturbation

The pCN algorithm uses an autoregressive model as its proposal

mechanism. This approach is particularly effective when the target

distribution is a small perturbation of a normal distribution.

62 / 87

2.3 Preconditioned Crank-Nicolson
(pCN) and Gaussian perturbation

The pCN algorithm uses an autoregressive model as its proposal

mechanism. This approach is particularly effective when the target

distribution is a small perturbation of a normal distribution.

A variant of the Metropolis algorithm is the preconditioned Crank-Nicolson

(pCN) method, often used in Bayesian computation. This method is well-suited

for high-dimensional problems.

62 / 87

2.3 Preconditioned Crank-Nicolson
(pCN) and Gaussian perturbation

The pCN algorithm uses an autoregressive model as its proposal

mechanism. This approach is particularly effective when the target

distribution is a small perturbation of a normal distribution.

A variant of the Metropolis algorithm is the preconditioned Crank-Nicolson

(pCN) method, often used in Bayesian computation. This method is well-suited

for high-dimensional problems.

The proposed state in the pCN algorithm is given by:

where is a tuning parameter.

y = ρx + σ√1 − ρ2w, w ∼ N (0, Id),

ρ ∈ (−1, 1)

62 / 87

Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

defined as:

where is the prior distribution and represents the log-likelihood.

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

63 / 87

Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

defined as:

where is the prior distribution and represents the log-likelihood.

The goal is to compute the expectation of a function with respect to this

posterior distribution.

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

63 / 87

Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

defined as:

where is the prior distribution and represents the log-likelihood.

The goal is to compute the expectation of a function with respect to this

posterior distribution.

In typical Bayesian inverse problems, the parameter space is a high-

dimensional Euclidean space, with being a normal distribution.

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

P(dθ)

63 / 87

Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

defined as:

where is the prior distribution and represents the log-likelihood.

The goal is to compute the expectation of a function with respect to this

posterior distribution.

In typical Bayesian inverse problems, the parameter space is a high-

dimensional Euclidean space, with being a normal distribution.

In this setting, the random-walk Metropolis algorithm tends to perform poorly.

But how does the pCN algorithm fare?

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

P(dθ)

63 / 87

Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

defined as:

where is the prior distribution and represents the log-likelihood.

The goal is to compute the expectation of a function with respect to this

posterior distribution.

In typical Bayesian inverse problems, the parameter space is a high-

dimensional Euclidean space, with being a normal distribution.

In this setting, the random-walk Metropolis algorithm tends to perform poorly.

But how does the pCN algorithm fare?

Assume and let .

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

P(dθ)

P = N (0, 1) σ = 1

63 / 87

Thanks to the autoregressive nature of the pCN model, the transition:

is reversible with respect to .

y = ρx + √1 − ρ2w, w ∼ N (0, Id),

N (0, Id)

64 / 87

Thanks to the autoregressive nature of the pCN model, the transition:

is reversible with respect to .

This means that only minimal traffic control is required for ensuring stability.

y = ρx + √1 − ρ2w, w ∼ N (0, Id),

N (0, Id)

64 / 87

Thanks to the autoregressive nature of the pCN model, the transition:

is reversible with respect to .

This means that only minimal traffic control is required for ensuring stability.

Specifically, the acceptance probability is given by:

where is the proposed state and is the current state.

y = ρx + √1 − ρ2w, w ∼ N (0, Id),

N (0, Id)

min {1, exp(l(θ∗) − l(θ))} ,

θ∗ θ

64 / 87

Thanks to the autoregressive nature of the pCN model, the transition:

is reversible with respect to .

This means that only minimal traffic control is required for ensuring stability.

Specifically, the acceptance probability is given by:

where is the proposed state and is the current state.

Even in high dimensions, sometimes this ratio tends to be stable, unlike the

behavior seen with the random-walk Metropolis algorithm.

y = ρx + √1 − ρ2w, w ∼ N (0, Id),

N (0, Id)

min {1, exp(l(θ∗) − l(θ))} ,

θ∗ θ

64 / 87

Summary

The pCN algorithm is specifically designed for handling Gaussian

perturbations.

65 / 87

Summary

The pCN algorithm is specifically designed for handling Gaussian

perturbations.

In high-dimensional settings, it often maintains a high acceptance

probability.

65 / 87

Summary

The pCN algorithm is specifically designed for handling Gaussian

perturbations.

In high-dimensional settings, it often maintains a high acceptance

probability.

However, it's important to note that its performance deteriorates

significantly when the target distribution deviates far from Gaussian. This

method is sometimes not robust.

65 / 87

Exercise 4.

66 / 87

Exercise 4.

4.1 Verify that the acceptance ratio for the preconditioned Crank-Nicolson

algorithm, with the target distribution

is given by

Π(dx) ∝ exp(−U(x) − x2/2)dx

α(x, y) = min {1, exp(−U(y) + U(x))} .

66 / 87

Exercise 4.

4.1 Verify that the acceptance ratio for the preconditioned Crank-Nicolson

algorithm, with the target distribution

is given by

4.2 Write code (in R, Python, etc.) for the preconditioned Crank-Nicolson

algorithm targeting the distribution . Conclude that the

performance, although not mathematically defined, is worse compared to the

random walk Metropolis algorithm.

Π(dx) ∝ exp(−U(x) − x2/2)dx

α(x, y) = min {1, exp(−U(y) + U(x))} .

π(x) ∝ 1
1+x2

66 / 87

Exercise 4.

4.1 Verify that the acceptance ratio for the preconditioned Crank-Nicolson

algorithm, with the target distribution

is given by

4.2 Write code (in R, Python, etc.) for the preconditioned Crank-Nicolson

algorithm targeting the distribution . Conclude that the

performance, although not mathematically defined, is worse compared to the

random walk Metropolis algorithm.

4.3 Discuss the reason behind this observation.

Π(dx) ∝ exp(−U(x) − x2/2)dx

α(x, y) = min {1, exp(−U(y) + U(x))} .

π(x) ∝ 1
1+x2

66 / 87

3. (Advanced) Non-reversiblility

67 / 87

3.1 Non-Reversibility in descrete time

68 / 87

3.1 Non-Reversibility in descrete time
From here, we'll explore non-reversible methods as an advanced

topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they offer a broader range of options and

can enhance the efficiency of certain sampling techniques.

68 / 87

3.1 Non-Reversibility in descrete time
From here, we'll explore non-reversible methods as an advanced

topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they offer a broader range of options and

can enhance the efficiency of certain sampling techniques.

Let’s now discuss the reversibility and non-reversibility in the Metropolis

algorithms.

68 / 87

3.1 Non-Reversibility in descrete time
From here, we'll explore non-reversible methods as an advanced

topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they offer a broader range of options and

can enhance the efficiency of certain sampling techniques.

Let’s now discuss the reversibility and non-reversibility in the Metropolis

algorithms.

Reversibility simplifies algorithm design but can sometimes lead to inefficiency.

68 / 87

3.1 Non-Reversibility in descrete time
From here, we'll explore non-reversible methods as an advanced

topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they offer a broader range of options and

can enhance the efficiency of certain sampling techniques.

Let’s now discuss the reversibility and non-reversibility in the Metropolis

algorithms.

Reversibility simplifies algorithm design but can sometimes lead to inefficiency.

In certain cases, the Markov chain spends too much time exploring the same

areas, leading to longer travel distances before covering the state space

adequately.

68 / 87

Lifting

69 / 87

Lifting

One way to introduce non-reversibility is through a technique called lifting,

which involves extending the state space.

69 / 87

Lifting

One way to introduce non-reversibility is through a technique called lifting,

which involves extending the state space.

In lifting, we introduce a velocity variable and allow the chain to

switch directions at certain points.

v ∈ {−1, +1}

69 / 87

Lifting

One way to introduce non-reversibility is through a technique called lifting,

which involves extending the state space.

In lifting, we introduce a velocity variable and allow the chain to

switch directions at certain points.

For example, starting from , the algorithm can move to if

the proposal is accepted. If rejected, it stays at .

v ∈ {−1, +1}

(x, +1) (x + |w|, −1)
(x, +1)

69 / 87

Lifting Visualization: Example by Gustafson 1996

Here’s an example of how lifting works in practice:

0 50 100 150 200

−15

−10

−5

0

5
Non-reversible
Reversible

index

g

70 / 87

Summary

71 / 87

Summary

Recall that the Metropolis algorithm is a two-step procedure: propose and

then accept or reject.

71 / 87

Summary

Recall that the Metropolis algorithm is a two-step procedure: propose and

then accept or reject.

The lifting procedure works as follows:

71 / 87

Summary

Recall that the Metropolis algorithm is a two-step procedure: propose and

then accept or reject.

The lifting procedure works as follows:

If the proposal is accepted, the direction remains unchanged. If it is

rejected, the sign is reversed.

71 / 87

Summary

Recall that the Metropolis algorithm is a two-step procedure: propose and

then accept or reject.

The lifting procedure works as follows:

If the proposal is accepted, the direction remains unchanged. If it is

rejected, the sign is reversed.

This method works well in one dimension. However, extending it to multiple

dimensions requires special care.

71 / 87

Some recent progress in puctures (K., Song 2023)

72 / 87

Some recent progress in puctures (K., Song 2023)

Extending the previous method to the multidimensional case in a

more useful direction was challenging. Due to time constraints, we

present the recent results in pictures only.

72 / 87

Multi-dim case: (Autoregressive)Rd

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

−10

−8

−6

−4

−2

x

y

73 / 87

Multi-dim case: (Beta-Gamma)Rd
+

0 2 4 6 8 10

0

2

4

6

8

10

−14

−12

−10

−8

−6

−4

x

y

74 / 87

Exercise 5.

75 / 87

Exercise 5.

5.1 Write code (in R, Python, etc.) for the random walk Metropolis algorithm

with lifting with targeting the distribution . Plot a path and

compare it to that of the random walk Metropolis algorithm.

π(x) ∝ 1
1+x2

75 / 87

3.2 Non-reversibility in continous time

76 / 87

3.2 Non-reversibility in continous time
Designing non-reversible methods has been challenging because it

requires balancing inflow and outflow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.

76 / 87

3.2 Non-reversibility in continous time
Designing non-reversible methods has been challenging because it

requires balancing inflow and outflow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.

Recently, algorithms that operate in continuous time, such as the Zig-Zag

Sampler and Bouncy Particle Sampler, have gained attention.

76 / 87

3.2 Non-reversibility in continous time
Designing non-reversible methods has been challenging because it

requires balancing inflow and outflow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.

Recently, algorithms that operate in continuous time, such as the Zig-Zag

Sampler and Bouncy Particle Sampler, have gained attention.

These algorithms define piecewise determinsitic Markov processes.

76 / 87

3.2 Non-reversibility in continous time
Designing non-reversible methods has been challenging because it

requires balancing inflow and outflow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.

Recently, algorithms that operate in continuous time, such as the Zig-Zag

Sampler and Bouncy Particle Sampler, have gained attention.

These algorithms define piecewise determinsitic Markov processes.

These methods remove the need to define discrete-time steps and allow the

chain to move continuously through the state space.

76 / 87

A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a diffusion term.

77 / 87

A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a diffusion term.

This process has been highlighted in Monte Carlo literature, specifically in

Peters and de With 2012 and Michel et al. 2014 .

77 / 87

A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a diffusion term.

This process has been highlighted in Monte Carlo literature, specifically in

Peters and de With 2012 and Michel et al. 2014 .

The PDMP is characterised by being non-reversible and distinct from

traditional Markov chain Monte Carlo (MCMC) methods, as it is a continuous-

time process.

77 / 87

A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a diffusion term.

This process has been highlighted in Monte Carlo literature, specifically in

Peters and de With 2012 and Michel et al. 2014 .

The PDMP is characterised by being non-reversible and distinct from

traditional Markov chain Monte Carlo (MCMC) methods, as it is a continuous-

time process.

Also PDMPs seem to be suitable for a sub-sampling implementation.

77 / 87

PDMP triplet Davis1984

Let be the state space. The triplet consists of:E (φ,λ,Q)

78 / 87

PDMP triplet Davis1984

Let be the state space. The triplet consists of:

Flow: , where and .

E (φ,λ,Q)

(t,x) ↦ φt(x) φ0(x) = x φt(φs(x)) = φt+s(x)

78 / 87

PDMP triplet Davis1984

Let be the state space. The triplet consists of:

Flow: , where and .

Conditional intensity: .

E (φ,λ,Q)

(t,x) ↦ φt(x) φ0(x) = x φt(φs(x)) = φt+s(x)

λ(x) ≥ 0

78 / 87

PDMP triplet Davis1984

Let be the state space. The triplet consists of:

Flow: , where and .

Conditional intensity: .

Jump size: , which is a Markov kernel.

E (φ,λ,Q)

(t,x) ↦ φt(x) φ0(x) = x φt(φs(x)) = φt+s(x)

λ(x) ≥ 0

Q(x,A)

78 / 87

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

79 / 87

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

79 / 87

This determines up to time .

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

79 / 87

This determines up to time .

Next, we repeat the following for :

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

n = 2, 3, 4, …

En ∼ E(1) ⇝ Tn = inf{t > Tn−1 : En ≤ ∫
t

Tn−1

λ(φs−Tn−1(x(Tn−1)))ds}

79 / 87

This determines up to time .

Next, we repeat the following for :

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

n = 2, 3, 4, …

En ∼ E(1) ⇝ Tn = inf{t > Tn−1 : En ≤ ∫
t

Tn−1

λ(φs−Tn−1(x(Tn−1)))ds}
⇝ x(t) = φt−Tn−1(x(Tn−1)) (Tn−1 < t < Tn), x(Tn) ∼ Q(x(Tn−), ⋅)

79 / 87

This determines up to time .

Next, we repeat the following for :

This determines .

1

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

n = 2, 3, 4, …

En ∼ E(1) ⇝ Tn = inf{t > Tn−1 : En ≤ ∫
t

Tn−1

λ(φs−Tn−1(x(Tn−1)))ds}
⇝ x(t) = φt−Tn−1(x(Tn−1)) (Tn−1 < t < Tn), x(Tn) ∼ Q(x(Tn−), ⋅)

x(t)

1 If (i.e., if the process is non-explosive), then is not defined

for .

P(supn Tn = ∞) ≠ 1 x(t)
t ∈ R+

79 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .Rd × Rd

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Flow: fixed. .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Flow: fixed. .

There are are two souces of jumps:

Conditional intensity: .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Flow: fixed. .

There are are two souces of jumps:

Conditional intensity: .

Jump size: fixed. .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

x v ↦ v − 2 × v⊤n(x) n(x)

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Flow: fixed. .

There are are two souces of jumps:

Conditional intensity: .

Jump size: fixed. .

and

Conditional intensity: .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

x v ↦ v − 2 × v⊤n(x) n(x)

ρ

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Flow: fixed. .

There are are two souces of jumps:

Conditional intensity: .

Jump size: fixed. .

and

Conditional intensity: .

Jump size: fixed. .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

x v ↦ v − 2 × v⊤n(x) n(x)

ρ

x v ∼ N (0, Id)

80 / 87

Here’s an example in three dimensions:

81 / 87

Extended generator

82 / 87

Extended generator

A continuous Markov process is characterized by the short-term

behavior of the process. For a Markov process , this is

essentially the derivative of with respect to at

.

(Zt)
E[f(Zt) ∣ Z0 = z] t

t = 0

82 / 87

Extended generator

A continuous Markov process is characterized by the short-term

behavior of the process. For a Markov process , this is

essentially the derivative of with respect to at

.

where and , and is

the refresh operator which changes the direction randomly.

(Zt)
E[f(Zt) ∣ Z0 = z] t

t = 0

Lf(x, v) = v⊤∂xf(x, v) + (v⊤∇U(x))+ (B − id)f(x, v) + ρ (R − id)f(x, v)

Bf(x, v) = f(x,B(x)v) B(x)v = (I − 2n(x)n(x)⊤)v R
v

82 / 87

Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

83 / 87

Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

The process is defined in .Rd × {−1, +1}d

83 / 87

Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

The process is defined in .

Flow: fixed. .

Rd × {−1, +1}d

v x′ = v

83 / 87

Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

The process is defined in .

Flow: fixed. .

There are -sources of jumps:

Conditional intensity: .

Rd × {−1, +1}d

v x′ = v

d

λi(x) = (vi∂iU(x))+

83 / 87

Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

The process is defined in .

Flow: fixed. .

There are -sources of jumps:

Conditional intensity: .

Jump size: fixed. Switch the sign of -th component of .

Rd × {−1, +1}d

v x′ = v

d

λi(x) = (vi∂iU(x))+

x i v

83 / 87

Here’s an example of the Zig-Zag Sampler in three dimensions:

84 / 87

Extended generator

State space .

where and switches the -th coordinate of .

Rd × {−1, +1}d

Lf(x, v) = v⊤∂xf(x, v) +
d

∑
i=1

(vi∂iU(x))+ (Fi − id)f(x, v)

Fif(x, v) = f(x,Fiv) Fi i v

85 / 87

Motivation for using PDMPs

Non-reversible Avoid diffusive behaviour (?)

Scalable (I do not have enough time to explain this.)

(Anyway,) Different from MCMC

⇝

86 / 87

Motivation for using PDMPs

Non-reversible Avoid diffusive behaviour (?)

Scalable (I do not have enough time to explain this.)

(Anyway,) Different from MCMC

Packages

RZigZag : Code: R, Algorithms: BPS, ZZ

⇝

86 / 87

Motivation for using PDMPs

Non-reversible Avoid diffusive behaviour (?)

Scalable (I do not have enough time to explain this.)

(Anyway,) Different from MCMC

Packages

RZigZag : Code: R, Algorithms: BPS, ZZ

PDSampler.jl : Code: Julia, Algorithms: BPS

⇝

86 / 87

Motivation for using PDMPs

Non-reversible Avoid diffusive behaviour (?)

Scalable (I do not have enough time to explain this.)

(Anyway,) Different from MCMC

Packages

RZigZag : Code: R, Algorithms: BPS, ZZ

PDSampler.jl : Code: Julia, Algorithms: BPS

ZigZagBoomerang : Code: Julia, Algorithms: BPS, ZZ, Boomerang

⇝

86 / 87

Motivation for using PDMPs

Non-reversible Avoid diffusive behaviour (?)

Scalable (I do not have enough time to explain this.)

(Anyway,) Different from MCMC

Packages

RZigZag : Code: R, Algorithms: BPS, ZZ

PDSampler.jl : Code: Julia, Algorithms: BPS

ZigZagBoomerang : Code: Julia, Algorithms: BPS, ZZ, Boomerang

Additionally, check out the brand new pdmp-jax by Charly Andral!

⇝

86 / 87

Summary

87 / 87

Summary

The ergodicity of Markov chains is demonstrated through non-singularity and

invariance.

87 / 87

Summary

The ergodicity of Markov chains is demonstrated through non-singularity

and invariance.

Markov Chain Monte Carlo (MCMC) methods can approximate integrals,

and we understand both how to design them and why they converge.

87 / 87

Summary

The ergodicity of Markov chains is demonstrated through non-singularity

and invariance.

Markov Chain Monte Carlo (MCMC) methods can approximate integrals,

and we understand both how to design them and why they converge.

As an advanced topic, we treat Continuous-time methods, such as the Zig-Zag

Sampler and Bouncy Particle Sampler.

87 / 87

Markov Chain Monte Carlo
Kengo Kamatani

Institute of Statistical Mathematics

https://unsplash.com/@joshuajamias?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/photo-of-two-man-wearing-taekwondo-suit-qmdqe3Cs5Og?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/10.1214/aoap/1034625254
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/10.1214/aoap/1034625254
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/10.1214/aoap/1034625254
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html
https://cran.r-project.org/web/packages/RZigZag/index.html
https://cran.r-project.org/web/packages/RZigZag/index.html
https://alan-turing-institute.github.io/PDSampler.jl/v0.1/examples/ex_gbps1.html
https://cran.r-project.org/web/packages/RZigZag/index.html
https://alan-turing-institute.github.io/PDSampler.jl/v0.1/examples/ex_gbps1.html
https://github.com/mschauer/ZigZagBoomerang.jl
https://cran.r-project.org/web/packages/RZigZag/index.html
https://alan-turing-institute.github.io/PDSampler.jl/v0.1/examples/ex_gbps1.html
https://github.com/mschauer/ZigZagBoomerang.jl
https://pypi.org/project/pdmp-jax/

1. Ergodicity of Markov chains

2 / 87

1.1 Markov Chains

3 / 87

1.1 Markov Chains
A Markov chain is a sequence of random variables ,

which extends the concept of independent and identically

distributed variables.

X0,X1,…

3 / 87

1.1 Markov Chains
A Markov chain is a sequence of random variables ,

which extends the concept of independent and identically

distributed variables.

A sequence of random variables is called a Markov chain if there exists a

function such that, for each , the following holds:

Here, is called the Markov kernel.

X0,X1,…

P(x, ⋅) m = 0, 1, 2,…

P(Xm+1 ∈ A ∣ Xm = x) = P(x,A)

P(x, ⋅)

3 / 87

 represents a probability distribution for each .P(x, ⋅) x

4 / 87

 represents a probability distribution for each .

The probability that the next state will be in set , given the current state , is

expressed as:

P(x, ⋅) x

A x

P(x,A) = P(Xm+1 ∈ A ∣ Xm = x)

4 / 87

 represents a probability distribution for each .

The probability that the next state will be in set , given the current state , is

expressed as:

Similarly, the probability that the next-next state will be in set , given the

current state , is:

P(x, ⋅) x

A x

P(x,A) = P(Xm+1 ∈ A ∣ Xm = x)

A
x

P 2(x,A) = P(Xm+2 ∈ A ∣ Xm = x)

4 / 87

 represents a probability distribution for each .

The probability that the next state will be in set , given the current state , is

expressed as:

Similarly, the probability that the next-next state will be in set , given the

current state , is:

More generally, for any ,

P(x, ⋅) x

A x

P(x,A) = P(Xm+1 ∈ A ∣ Xm = x)

A
x

P 2(x,A) = P(Xm+2 ∈ A ∣ Xm = x)

n

P n(x,A) = P(Xm+n ∈ A ∣ Xm = x)

4 / 87

Two Types of Markov Chains

5 / 87

Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

5 / 87

Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

In the first type, the behavior (distribution) of remains dependent on the

initial value , even as becomes large.

Xm
X0 = x m

5 / 87

Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

In the first type, the behavior (distribution) of remains dependent on

the initial value , even as becomes large.

In the second type, this dependency diminishes over time.

Xm
X0 = x m

5 / 87

Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

In the first type, the behavior (distribution) of remains dependent on

the initial value , even as becomes large.

In the second type, this dependency diminishes over time.

The first type is called non-ergodic, while the second is ergodic.

Xm
X0 = x m

5 / 87

Two Types of Markov Chains

Now, let's introduce two types of Markov chains:

In the first type, the behavior (distribution) of remains dependent on

the initial value , even as becomes large.

In the second type, this dependency diminishes over time.

The first type is called non-ergodic, while the second is ergodic.

Let’s focus on initial value dependency.

Xm
X0 = x m

5 / 87

1.2 Wright-Fisher Model

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .N

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .

You want to create a new jar by drawing stones from the original jar and

making copies of them in the new one.

N

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .

You want to create a new jar by drawing stones from the original jar and

making copies of them in the new one.

After you copy a stone, you put it back into the original jar, so nothing changes

there.

N

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .

You want to create a new jar by drawing stones from the original jar and

making copies of them in the new one.

After you copy a stone, you put it back into the original jar, so nothing changes

there.

You do this times, copying one stone each time.

N

N

6 / 87

1.2 Wright-Fisher Model
Setup

Imagine you have a jar with two types of stones: red and blue.

The total number of stones in the jar is .

You want to create a new jar by drawing stones from the original jar and

making copies of them in the new one.

After you copy a stone, you put it back into the original jar, so nothing changes

there.

You do this times, copying one stone each time.

Once the new jar is filled, the original jar is thrown away, and the process starts

again.

N

N

6 / 87

Example

If (there are 10 stones total in the jar), and 3 of those stones are red,

the chance of picking a red stone on any given draw is .

N = 10
3/10 = 30%

7 / 87

Example

If (there are 10 stones total in the jar), and 3 of those stones are red,

the chance of picking a red stone on any given draw is .

The number of red stones in the new jar after drawing times is random but

follows a binomial distribution, which just means the outcome is based on

repeated trials of picking red stones with a certain probability. In this case, the

number of red stones in the new jar follows :

N = 10
3/10 = 30%

N

B(N , 0.3)

P(X = y) = ()(0.3)y(0.7)10−y10
y

7 / 87

Example

If (there are 10 stones total in the jar), and 3 of those stones are red,

the chance of picking a red stone on any given draw is .

The number of red stones in the new jar after drawing times is random but

follows a binomial distribution, which just means the outcome is based on

repeated trials of picking red stones with a certain probability. In this case, the

number of red stones in the new jar follows :

This gives the probability that the new jar will have exactly red stones, where

 is the binomial coefficient, a way of counting how many ways you can

choose red stones out of draws.

N = 10
3/10 = 30%

N

B(N , 0.3)

P(X = y) = ()(0.3)y(0.7)10−y10
y

y

()N
y

y N

7 / 87

The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

x
N − x

8 / 87

The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the first trial (creating the first new jar), the number of red stones in the new

jar is random and follows indenepdent draw from a binomial distribution

.

x
N − x

N
B(N ,x/N)

8 / 87

The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the first trial (creating the first new jar), the number of red stones in the new

jar is random and follows indenepdent draw from a binomial distribution

.

For each following trial, the same process happens: the number of red stones

in the new jar depends on how many red stones were in the previous jar.

x
N − x

N
B(N ,x/N)

8 / 87

The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the first trial (creating the first new jar), the number of red stones in the new

jar is random and follows indenepdent draw from a binomial distribution

.

For each following trial, the same process happens: the number of red stones

in the new jar depends on how many red stones were in the previous jar.

If there were red stones before, the number of red stones in the new jar still

follows a binomial distribution .

x
N − x

N
B(N ,x/N)

x
B(N ,x/N)

8 / 87

The Process

Now, let's describe this in general terms. Suppose we start with red stones in

the jar (so there are blue stones).

In the first trial (creating the first new jar), the number of red stones in the new

jar is random and follows indenepdent draw from a binomial distribution

.

For each following trial, the same process happens: the number of red stones

in the new jar depends on how many red stones were in the previous jar.

If there were red stones before, the number of red stones in the new jar still

follows a binomial distribution .

This process, where the number of red stones in each new jar depends on the

number from the previous jar, is called the Wright-Fisher model.

x
N − x

N
B(N ,x/N)

x
B(N ,x/N)

8 / 87

Summary

You start with a jar containing red and blue stones.

9 / 87

Summary

You start with a jar containing red and blue stones.

You create a new jar by randomly copying stones from the original one, and

the number of red stones in the new jar is based on a binomial distribution.

9 / 87

Summary

You start with a jar containing red and blue stones.

You create a new jar by randomly copying stones from the original one, and

the number of red stones in the new jar is based on a binomial distribution.

After each trial, the new jar becomes the starting point for the next trial.

9 / 87

Summary

You start with a jar containing red and blue stones.

You create a new jar by randomly copying stones from the original one, and

the number of red stones in the new jar is based on a binomial distribution.

After each trial, the new jar becomes the starting point for the next trial.

The number of red stones in each new jar depends on how many red

stones were in the previous jar.

9 / 87

Let's experiment with this model for , starting with 45 red stones, over

25 trials:

N = 100

0 5 10 15 20 25
25

30

35

40

45

Wright-Fisher Model

Generation

A
lle

le
 F

re
qu

en
cy

10 / 87

Now, let's extend the experiment to 1000 trials. Note that the number of red

stones becomes 0 at some point, and once this happens, the number does not

change:

0 200 400 600 800 1000

0

20

40

60

80

100

Wright-Fisher Model

Generation

A
lle

le
 F

re
qu

en
cy

11 / 87

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Generation: 0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Wright-Fisher Model: Allele Frequency Distribution Over Generations

Allele Frequency

Pr
ob

ab
ili

ty

Play

12 / 87

When the number of red stones reaches either 0 or , it remains unchanged

thereafter.

N

13 / 87

When the number of red stones reaches either 0 or , it remains unchanged

thereafter.

A set like , from which the process cannot escape once entered, is called

an absorbing set.

N

{0,N}

13 / 87

When the number of red stones reaches either 0 or , it remains unchanged

thereafter.

A set like , from which the process cannot escape once entered, is called

an absorbing set.

In the Wright-Fisher model, the final state will end up in an absorbing set,

either 0 or , and the proportion of each is determined probabilistically based

on the initial number of red stones.

N

{0,N}

N

13 / 87

Exercises 1.

14 / 87

Exercises 1.

1.1 Evaluate and E[Xm+1 ∣ Xm = x] Var(Xm+1 ∣ Xm = x)

14 / 87

Exercises 1.

1.1 Evaluate and

1.2 Let be a positive integer, and let be an integer such that .

For the Wright-Fisher model, show that:

E[Xm+1 ∣ Xm = x] Var(Xm+1 ∣ Xm = x)

N x 0 ≤ x ≤ N

E[Xm+1(N −Xm+1) ∣ Xm = x] = (1 −)x(N − x).
1
N

14 / 87

Exercises 1.

1.1 Evaluate and

1.2 Let be a positive integer, and let be an integer such that .

For the Wright-Fisher model, show that:

1.3 From the above equation, conclude that converges in probability to or

 when .

E[Xm+1 ∣ Xm = x] Var(Xm+1 ∣ Xm = x)

N x 0 ≤ x ≤ N

E[Xm+1(N −Xm+1) ∣ Xm = x] = (1 −)x(N − x).
1
N

Xm 0
N m→∞

14 / 87

1.3 Autoregressive Model

15 / 87

1.3 Autoregressive Model
A Markov chain defined by

where are independent, is called an autoregressive model.

Xm+1 = αXm +Wm+1, Wm+1 ∼ N (0,σ2),

W1,W2,…

15 / 87

1.3 Autoregressive Model
A Markov chain defined by

where are independent, is called an autoregressive model.

From this equation, we can derive:

Xm+1 = αXm +Wm+1, Wm+1 ∼ N (0,σ2),

W1,W2,…

Xm = αmX0 +
m−1

∑
n=0

αnWm−n.

15 / 87

Due to the reproductive property of normal distributions, we find that

follows a normal distribution:

Xm

Xm ∼ N (αmX0, σ2) ,1 − α2m

1 − α2

16 / 87

Due to the reproductive property of normal distributions, we find that

follows a normal distribution:

and if ,

Xm

Xm ∼ N (αmX0, σ2) ,
1 − α2m

1 − α2

|α| < 1

Xm → N (0,) as m→ ∞.
σ2

1 − α2

16 / 87

Due to the reproductive property of normal distributions, we find that

follows a normal distribution:

and if ,

The autoregressive model differs from the Wright-Fisher model in that the

limiting distribution does not depend on the initial value.

Xm

Xm ∼ N (αmX0, σ2) ,
1 − α2m

1 − α2

|α| < 1

Xm → N (0,) as m→ ∞.
σ2

1 − α2

16 / 87

Example: Autoregressive Process

0 5 10 15 20 25

−5

−4

−3

−2

−1

0

1

Autoregressive (AR) Process

Step

Va
lu
e

17 / 87

0 200 400 600 800 1000

−6

−4

−2

0

2

4

6

8

Autoregressive (AR) Process

Step

Va
lu
e

18 / 87

−8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Step: 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Marginal Distribution of AR Process Over Time

Value

D
en

si
ty

Play

19 / 87

Summary

20 / 87

Summary

We introduced two types of Markov chains: the Wright-Fisher model and the

Autoregressive model.

20 / 87

Summary

We introduced two types of Markov chains: the Wright-Fisher model and

the Autoregressive model.

These two chains exhibit distinctly different behaviors.

20 / 87

Summary

We introduced two types of Markov chains: the Wright-Fisher model and

the Autoregressive model.

These two chains exhibit distinctly different behaviors.

In the Wright-Fisher model, the marginal distribution remains influenced by

the initial state, even after a large number of iterations.

20 / 87

Summary

We introduced two types of Markov chains: the Wright-Fisher model and

the Autoregressive model.

These two chains exhibit distinctly different behaviors.

In the Wright-Fisher model, the marginal distribution remains influenced by

the initial state, even after a large number of iterations.

In contrast, the Autoregressive model shows diminishing dependence on

the initial state as the number of iterations increases, with the system

gradually stabilizing.

20 / 87

Summary

We introduced two types of Markov chains: the Wright-Fisher model and

the Autoregressive model.

These two chains exhibit distinctly different behaviors.

In the Wright-Fisher model, the marginal distribution remains influenced by

the initial state, even after a large number of iterations.

In contrast, the Autoregressive model shows diminishing dependence on

the initial state as the number of iterations increases, with the system

gradually stabilizing.

Let’s continue with a more detailed explanation of ergodicity and the concepts

involved in the behavior of Markov chains.

20 / 87

1.4 Ergodicity Explained

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic behavior).

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic

behavior).

One where the influence diminishes (ergodic behavior).

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic

behavior).

One where the influence diminishes (ergodic behavior).

To explain these differences in more details, we need to introduce three

important terms:

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic

behavior).

One where the influence diminishes (ergodic behavior).

To explain these differences in more details, we need to introduce three

important terms:

1. Invariant Probability Measure

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic

behavior).

One where the influence diminishes (ergodic behavior).

To explain these differences in more details, we need to introduce three

important terms:

1. Invariant Probability Measure

2. Singularity

21 / 87

1.4 Ergodicity Explained
Now that we have introduced two examples:

One where the influence of the initial value persists (non-ergodic

behavior).

One where the influence diminishes (ergodic behavior).

To explain these differences in more details, we need to introduce three

important terms:

1. Invariant Probability Measure

2. Singularity

3. Total Variation

21 / 87

Invariant Probability Measure

22 / 87

Invariant Probability Measure

An invariant probability measure is a measure that remains

unchanged under the transition induced by a Markov kernel. It

serves as the limiting measure of an ergodic Markov chain. However,

the converse does not hold true.

22 / 87

Invariant Probability Measure

An invariant probability measure is a measure that remains

unchanged under the transition induced by a Markov kernel. It

serves as the limiting measure of an ergodic Markov chain. However,

the converse does not hold true.

If a Markov chain is ergodic, as in the case of the autoregressive model where

, there exists a limiting distribution for , denoted by .|α| < 1 Xm Π

22 / 87

Invariant Probability Measure

An invariant probability measure is a measure that remains

unchanged under the transition induced by a Markov kernel. It

serves as the limiting measure of an ergodic Markov chain. However,

the converse does not hold true.

If a Markov chain is ergodic, as in the case of the autoregressive model where

, there exists a limiting distribution for , denoted by .

If , then must also hold. A probability distribution that

satisfies this property is called an invariant probability measure.

|α| < 1 Xm Π

X0 ∼ Π X1 ∼ Π Π

22 / 87

Singularity

23 / 87

Singularity

Probability measures are said to be mutually singular if they are

entirely distinct. We will assume that the Markov chains starting

from different points are not mutually singular, ensuring that the

chains mix well.

23 / 87

Singularity

Probability measures are said to be mutually singular if they are

entirely distinct. We will assume that the Markov chains starting

from different points are not mutually singular, ensuring that the

chains mix well.

Two probability distributions and are said to be mutually singular if there

exists a set such that:

P Q
A

P(A) = 0 and Q(Ac) = 0.

23 / 87

Singularity

Probability measures are said to be mutually singular if they are

entirely distinct. We will assume that the Markov chains starting

from different points are not mutually singular, ensuring that the

chains mix well.

Two probability distributions and are said to be mutually singular if there

exists a set such that:

In this case, we write . If and are not mutually singular, we write

.

P Q
A

P(A) = 0 and Q(Ac) = 0.

P ⊥ Q P Q
P ⊥/ Q

23 / 87

Let’s visualize this property on the next page using the overlapping areas of two

probability density functions.

24 / 87

Let’s visualize this property on the next page using the overlapping areas of two

probability density functions.

If there is a shared red region under both probability density functions, then

. If no such region exists, then .P ⊥/Q P ⊥ Q

24 / 87

25 / 87

Total Variation

26 / 87

Total Variation

Total variation distance measures the difference between two

probability distributions. It can be visualized as the area between the

two probability density functions.

26 / 87

Total Variation

Total variation distance measures the difference between two

probability distributions. It can be visualized as the area between the

two probability density functions.

We define the total variation distance between two probability distributions

and as:

P
Q

∥P −Q∥TV = ∫
E

|p(x) − q(x)| dx.

26 / 87

Total Variation

Total variation distance measures the difference between two

probability distributions. It can be visualized as the area between the

two probability density functions.

We define the total variation distance between two probability distributions

and as:

This measures the difference between the probability density functions

and .

P
Q

∥P −Q∥TV = ∫
E

|p(x) − q(x)| dx.

p(x)
q(x)

26 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

∥P −Q∥TV = Blue Region + Green Region.

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

∥P −Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

∥P −Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

Thus, the areas of the blue and green regions are equal:

∥P −Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

Blue Region = Green Region = ∥P −Q∥TV.
1
2

27 / 87

The total variation distance is the sum of the blue region and green region in

the diagram, representing the areas under each function.

Since the total area under each probability density function is 1, we have:

and similarly for the green region:

Thus, the areas of the blue and green regions are equal:

Hence, the area of the red region is:

If , the area of the red region is 0, meaning that , and

conversely, if , then .

∥P −Q∥TV = Blue Region + Green Region.

1 = Blue Region + Red Region,

1 = Green Region + Red Region.

Blue Region = Green Region = ∥P −Q∥TV.
1
2

Red Region = 1 − ∥P −Q∥TV.
1
2

P ⊥ Q ∥P −Q∥TV = 2
P ⊥/Q ∥P −Q∥TV < 2

27 / 87

Summary

28 / 87

Summary

An invariant probability measure is a measure that remains unchanged

under the transition dynamics of a Markov chain.

28 / 87

Summary

An invariant probability measure is a measure that remains unchanged

under the transition dynamics of a Markov chain.

If the red region of the graph is zero, we say that the two probability

measures are mutually singular.

28 / 87

Summary

An invariant probability measure is a measure that remains unchanged

under the transition dynamics of a Markov chain.

If the red region of the graph is zero, we say that the two probability

measures are mutually singular.

This red region can be expressed as , where

 is the total variation distance between the measures and .

1 − ∥P −Q∥TV/2
∥P −Q∥TV P Q

28 / 87

Exercise 2.

2.1 For a real number , find the total variation distance

.

μ
∥N (0, 1) −N (μ, 1)∥TV

29 / 87

Exercise 2.

2.1 For a real number , find the total variation distance

.

2.2 For a real number , find the total variation distance

.

μ
∥N (0, 1) −N (μ, 1)∥TV

σ > 0
∥N (0, 1) −N (0,σ2)∥TV

29 / 87

Exercise 2.

2.1 For a real number , find the total variation distance

.

2.2 For a real number , find the total variation distance

.

2.3 Prove that no invariant probability measure exists for the Autoregressive

model when . (Hint: Evaluate the characteristic function. Recall that every

characteristic function satisfies and is continuous at .)

μ
∥N (0, 1) −N (μ, 1)∥TV

σ > 0
∥N (0, 1) −N (0,σ2)∥TV

α = 1
ψ(u) ψ(0) = 1 u = 0

29 / 87

1.5 Theorem (The law of large
numbers):

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .x y P(x, ⋅) ⊥/ P(y, ⋅)

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .

Further, suppose there exists an invariant probability distribution .

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .

Further, suppose there exists an invariant probability distribution .

Then, for almost all points and sets :

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

x A

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .

Further, suppose there exists an invariant probability distribution .

Then, for almost all points and sets :

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

x A

P m(x,A)⟶m→∞ Π(A).

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .

Further, suppose there exists an invariant probability distribution .

Then, for almost all points and sets :

Moreover, if , the law of large numbers holds:

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

x A

P m(x,A)⟶m→∞ Π(A).

X0 = x

30 / 87

1.5 Theorem (The law of large
numbers):
For any points and , assume .

Further, suppose there exists an invariant probability distribution .

Then, for almost all points and sets :

Moreover, if , the law of large numbers holds:

as long as the right-hand side exists.

x y P(x, ⋅) ⊥/ P(y, ⋅)

Π

x A

P m(x,A)⟶m→∞ Π(A).

X0 = x

M−1

∑
m=0

f(Xm)⟶M→∞ ∫ f(x)Π(dx),
1
M

30 / 87

Proof Outline:

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:P(x, ⋅) P(y, ⋅)

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2,…
P n(x, ⋅) P n(y, ⋅) n

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

The proof concludes when the red region occupies 100% of the area, meaning

that and coincide completely as .

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2,…
P n(x, ⋅) P n(y, ⋅) n

P n(x, ⋅) P n(y, ⋅) n→∞

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

The proof concludes when the red region occupies 100% of the area, meaning

that and coincide completely as .

It is easy to see that this limiting distribution matches .

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2,…
P n(x, ⋅) P n(y, ⋅) n

P n(x, ⋅) P n(y, ⋅) n→∞

Π

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

The proof concludes when the red region occupies 100% of the area, meaning

that and coincide completely as .

It is easy to see that this limiting distribution matches .

Technically, it is not easy to directly observe the total variation

distance. The coupling technique is a useful method for estimating

the quantity, and we will briefly discuss it.

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2,…
P n(x, ⋅) P n(y, ⋅) n

P n(x, ⋅) P n(y, ⋅) n→∞

Π

31 / 87

Proof Outline:

The proof proceeds by considering the area of the red region formed by

 and , which is given by:

It turns out that, for , the area of the red region formed by

 and increases monotonically with respect to .

The proof concludes when the red region occupies 100% of the area, meaning

that and coincide completely as .

It is easy to see that this limiting distribution matches .

Technically, it is not easy to directly observe the total variation

distance. The coupling technique is a useful method for estimating

the quantity, and we will briefly discuss it.

For more details, see "Kulik (2017)" Theorem 2.5.1.

P(x, ⋅) P(y, ⋅)

1 − ∥P(x, ⋅) − P(y, ⋅)∥TV.
1
2

n = 1, 2,…
P n(x, ⋅) P n(y, ⋅) n

P n(x, ⋅) P n(y, ⋅) n→∞

Π

31 / 87

1.6 Coupling

32 / 87

1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

32 / 87

1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

Consider two continuous probability distributions and on the real line.P Q

32 / 87

1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

Consider two continuous probability distributions and on the real line.

If and are independent and distributed according to and ,

respectively, then:

P Q

X Y P Q

P(X = Y) = 0,

32 / 87

1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

Consider two continuous probability distributions and on the real line.

If and are independent and distributed according to and ,

respectively, then:

even if and are very close or even identical.

P Q

X Y P Q

P(X = Y) = 0,

P Q

32 / 87

1.6 Coupling
The total varation leads us to coupling, a technique to measure the

closeness of distributions by relating them to the closeness of the

corresponding random variables.

Consider two continuous probability distributions and on the real line.

If and are independent and distributed according to and ,

respectively, then:

even if and are very close or even identical.

However, with coupling, we can construct the pair in such a way that

we increase the probability or reduce the difference .

P Q

X Y P Q

P(X = Y) = 0,

P Q

(X,Y)
P(X = Y) |X − Y |

32 / 87

Coupling (continued)

Coupling is a method for constructing a pair , where and

, in such a way that we increase the probability or make

 smaller.

In Markov chain convergence theory, optimal coupling plays an important

role. Optimal coupling maximizes , which is beneficial for proving

convergence.

(X,Y) X ∼ P

Y ∼ Q P(X = Y)
|X − Y |

P(X = Y)

33 / 87

Imagine we have 100 German and 100 Japanese male Judo players (Judoka).

Our goal is to pair them by matching those in the same weight class. Ideally, we

want to create as many matches where the weight classes of the players,

and , are identical, meaning .

X
Y X = Y

The beautiful image was shared by Joshua Jamias on Unsplash

34 / 87

https://unsplash.com/@joshuajamias?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/photo-of-two-man-wearing-taekwondo-suit-qmdqe3Cs5Og?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

However, even with careful pairing, there’s a limit to the number of same-class

matches we can create.

35 / 87

However, even with careful pairing, there’s a limit to the number of same-class

matches we can create.

For example:

If there are 3 German and 5 Japanese players in the under-66 kg weight class,

the maximum number of same-class matches is 3.

If there are 6 German and 2 Japanese players in the 81 kg weight class, the

maximum number of same-class matches is 2.

35 / 87

However, even with careful pairing, there’s a limit to the number of same-class

matches we can create.

For example:

If there are 3 German and 5 Japanese players in the under-66 kg weight class,

the maximum number of same-class matches is 3.

If there are 6 German and 2 Japanese players in the 81 kg weight class, the

maximum number of same-class matches is 2.

Therefore, the total number of same-class matches is determined by the

smaller number of players from each group in every weight class. Any

remaining players will participate in mixed-class matches, where .X ≠ Y

35 / 87

The proportion of same-class matches corresponds to the red region in the

plot, representing the overlap of the probability densities.

36 / 87

The proportion of same-class matches corresponds to the red region in the

plot, representing the overlap of the probability densities.

Mathematically, when two distributions and are coupled, the maximum

probability of forming a match is:

This coupling, which achieves this maximum probability, is called optimal

coupling.

P Q
X = Y

P(X = Y) = 1 − ∥P −Q∥TV.
1
2

36 / 87

Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from different initial values and .x0 y0

37 / 87

Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from different initial values and .

From the initial values, we generate the next states using coupling:

x0 y0

(X1,Y1)

P(x0, ⋅),P(y0, ⋅).

37 / 87

Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from different initial values and .

From the initial values, we generate the next states using coupling:

From these new states , we generate the next pair

 using coupling:

x0 y0

(X1,Y1)

P(x0, ⋅),P(y0, ⋅).

(X1 = x1,Y1 = y1)
(X2,Y2)

P(x1, ⋅),P(y1, ⋅).

37 / 87

Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from different initial values and .

From the initial values, we generate the next states using coupling:

From these new states , we generate the next pair

 using coupling:

This process is repeated indefinitely.

x0 y0

(X1,Y1)

P(x0, ⋅),P(y0, ⋅).

(X1 = x1,Y1 = y1)
(X2,Y2)

P(x1, ⋅),P(y1, ⋅).

37 / 87

Sequential Coupling in Markov Chains

Now, let’s apply coupling sequentially to Markov chains. Consider two Markov

chains starting from different initial values and .

From the initial values, we generate the next states using coupling:

From these new states , we generate the next pair

 using coupling:

This process is repeated indefinitely.

Once , they remain coupled for all future steps.

x0 y0

(X1,Y1)

P(x0, ⋅),P(y0, ⋅).

(X1 = x1,Y1 = y1)
(X2,Y2)

P(x1, ⋅),P(y1, ⋅).

Xm = Ym

37 / 87

The inequality

is always true.

P(Xm = Ym) ≤ 1 − ∥P m(x, ⋅) − P m(y, ⋅)∥TV.
1
2

38 / 87

The inequality

is always true.

Through coupling, the left-hand side provides a good bound of the right-hand

side, and is easier to estimate.

P(Xm = Ym) ≤ 1 − ∥P m(x, ⋅) − P m(y, ⋅)∥TV.
1
2

38 / 87

Coupling Before and After

Before coupling (left side of the plot):

39 / 87

After coupling (right side of the plot):

40 / 87

Summary

41 / 87

Summary

The law of large numbers applies to Markov chains as well.

41 / 87

Summary

The law of large numbers applies to Markov chains as well.

A sufficient condition for this is that and are not mutually

singular, and that an invariant probability measure exists.

P(x, ⋅) P(y, ⋅)

41 / 87

Summary

The law of large numbers applies to Markov chains as well.

A sufficient condition for this is that and are not mutually

singular, and that an invariant probability measure exists.

Coupling is a powerful technique used to establish the law of large

numbers in Markov chains.

P(x, ⋅) P(y, ⋅)

41 / 87

From here ...

42 / 87

From here ...

We introduced the law of large numbers for Markov chains.

42 / 87

From here ...

We introduced the law of large numbers for Markov chains.

From here, we will introduce a Monte Carlo method using the theorem.

42 / 87

2. Markov chain Monte Carlo

43 / 87

2. Markov chain Monte Carlo
The Markov Chain Monte Carlo (MCMC) method is a powerful

numerical technique used to approximate expectations by

leveraging the law of large numbers of Markov chains. It generates

samples from a target distribution by constructing a Markov chain

that converges to this distribution, allowing for the estimation of

complex integrals or probabilistic quantities that are otherwise

intractable

43 / 87

2.1 Metropolis Algorithm

44 / 87

2.1 Metropolis Algorithm
The Metropolis algorithm is a core component of MCMC, which

constructs a reversible Markov chain to sample from a target

distribution.

44 / 87

2.1 Metropolis Algorithm
The Metropolis algorithm is a core component of MCMC, which

constructs a reversible Markov chain to sample from a target

distribution.

Let the state space be a discrete set, and let be the probability distribution

of interest, with probability function .

E Π
π(x)

44 / 87

2.1 Metropolis Algorithm
The Metropolis algorithm is a core component of MCMC, which

constructs a reversible Markov chain to sample from a target

distribution.

Let the state space be a discrete set, and let be the probability distribution

of interest, with probability function .

We attempt to transition from to with transition probability:

E Π
π(x)

x y

q(x, y).

44 / 87

2.1 Metropolis Algorithm
The Metropolis algorithm is a core component of MCMC, which

constructs a reversible Markov chain to sample from a target

distribution.

Let the state space be a discrete set, and let be the probability distribution

of interest, with probability function .

We attempt to transition from to with transition probability:

Now, assume stationarity has been reached, meaning that the random variable

 satisfies .

E Π
π(x)

x y

q(x, y).

X P(X = x) = π(x)

44 / 87

The outflow from to in one step is the original probability multiplied

by the transition probability :

x y π(x)
q(x, y)

π(x)q(x, y).

45 / 87

The outflow from to in one step is the original probability multiplied

by the transition probability :

Conversely, the inflow from to is:

x y π(x)
q(x, y)

π(x)q(x, y).

y x

π(y)q(y,x).

45 / 87

Introducing Traffic Control

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

x y
y x

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

x y
y x

π(x)q(x, y) < π(y)q(y,x),

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

then we don’t prevent the transition from to .

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

then we don’t prevent the transition from to .

On the other hand, if the outflow from to is greater, we control the inflow

and outflow by allowing the transition with a probability of:

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

x y

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

then we don’t prevent the transition from to .

On the other hand, if the outflow from to is greater, we control the inflow

and outflow by allowing the transition with a probability of:

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

x y

.
π(y)q(y,x)
π(x)q(x, y)

46 / 87

Introducing Traffic Control

Let’s introduce some traffic control measures. If the outflow from to is

less than the inflow from to , that is,

then we don’t prevent the transition from to .

On the other hand, if the outflow from to is greater, we control the inflow

and outflow by allowing the transition with a probability of:

If the transition is not allowed, the process stays at .

x y
y x

π(x)q(x, y) < π(y)q(y,x),

x y

x y

.
π(y)q(y,x)
π(x)q(x, y)

x

46 / 87

To summarize the two cases:

47 / 87

To summarize the two cases:

If , we allow the transition from to without

restriction.

π(x)q(x, y) ≤ π(y)q(y,x) x y

47 / 87

To summarize the two cases:

If , we allow the transition from to without

restriction.

If , we allow the transition with probability

.

π(x)q(x, y) ≤ π(y)q(y,x) x y

π(x)q(x, y) > π(y)q(y,x)

α(x, y) = min{1, }π(y)q(y,x)
π(x)q(x,y)

47 / 87

To summarize the two cases:

If , we allow the transition from to without

restriction.

If , we allow the transition with probability

.

This acceptance function is the core idea behind the Metropolis

algorithm.

π(x)q(x, y) ≤ π(y)q(y,x) x y

π(x)q(x, y) > π(y)q(y,x)

α(x, y) = min{1, }π(y)q(y,x)
π(x)q(x,y)

α(x, y)

47 / 87

Algorithm:

48 / 87

Algorithm:

The Metropolis algorithm proceeds as follows:

48 / 87

Algorithm:

The Metropolis algorithm proceeds as follows:

1. Start from an initial value .x

48 / 87

Algorithm:

The Metropolis algorithm proceeds as follows:

1. Start from an initial value .

2. Propose a new state by generating .

x

y y ∼ Q(x, ⋅)

48 / 87

Algorithm:

The Metropolis algorithm proceeds as follows:

1. Start from an initial value .

2. Propose a new state by generating .

3. Draw .

x

y y ∼ Q(x, ⋅)

u ∼ U[0, 1]

48 / 87

Algorithm:

The Metropolis algorithm proceeds as follows:

1. Start from an initial value .

2. Propose a new state by generating .

3. Draw .

4. If , move to , otherwise stay at .

x

y y ∼ Q(x, ⋅)

u ∼ U[0, 1]

u ≤ α(x, y) y x

48 / 87

10 20 30 40 50

−3

−2

−1

0

1

2

3

4

Iterations

S
ta

te
 V

al
ue

49 / 87

Reversiblity

The outflow and inflow becomes the same. A Markov chain with this

balance is called reversible. This prpoerty is the basis for the

Metropolis algorithm.

50 / 87

Reversiblity

The outflow and inflow becomes the same. A Markov chain with this

balance is called reversible. This prpoerty is the basis for the

Metropolis algorithm.

A Markov kernel is called -reversible for a measure if

are the same for any and .

P(x, ⋅) Π Π

∫
A

Π(dx)P(x,B) = ∫
B

Π(dx)P(x,A)

A B

50 / 87

Reversiblity

The outflow and inflow becomes the same. A Markov chain with this

balance is called reversible. This prpoerty is the basis for the

Metropolis algorithm.

A Markov kernel is called -reversible for a measure if

are the same for any and .

If is a probability measure, then is an invariant probability measure.

P(x, ⋅) Π Π

∫
A

Π(dx)P(x,B) = ∫
B

Π(dx)P(x,A)

A B

Π Π

50 / 87

Summary

51 / 87

Summary

The Markov Chain Monte Carlo (MCMC) algorithm is a numerical method for

approximating integrals, leveraging the law of large numbers for Markov

chains.

51 / 87

Summary

The Markov Chain Monte Carlo (MCMC) algorithm is a numerical method

for approximating integrals, leveraging the law of large numbers for

Markov chains.

The Metropolis algorithm, a core MCMC technique, relies on the principle

of reversibility.

51 / 87

Summary

The Markov Chain Monte Carlo (MCMC) algorithm is a numerical method

for approximating integrals, leveraging the law of large numbers for

Markov chains.

The Metropolis algorithm, a core MCMC technique, relies on the principle

of reversibility.

The Metropolis algorithm operates by repeating a two-step process:

Propose a new state and then either Accept or Reject it.

51 / 87

2.2 Random Walk Metropolis
Algorithm

52 / 87

2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

52 / 87

2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

The most basic type of Metropolis algorithm is the random walk Metropolis

algorithm. In this method, a random step is proposed from the current state,

and the step is either accepted or rejected based on the acceptance ratio.

52 / 87

2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

The most basic type of Metropolis algorithm is the random walk Metropolis

algorithm. In this method, a random step is proposed from the current state,

and the step is either accepted or rejected based on the acceptance ratio.

Here’s an example of a random walk Metropolis algorithm in R:

52 / 87

2.2 Random Walk Metropolis
Algorithm

The random walk Metropolis algorithm is the earliest and one of

the most well-known MCMC methods.

The most basic type of Metropolis algorithm is the random walk Metropolis

algorithm. In this method, a random step is proposed from the current state,

and the step is either accepted or rejected based on the acceptance ratio.

Here’s an example of a random walk Metropolis algorithm in R:

sd <- 0.25

target <- function(x) 1/(1 + x^2)

v <- numeric(1e2)

x <- runif(1)

for(i in 1:length(v)) {

 y <- x + sd * rnorm(1)

if(runif(1) < target(y)/target(x)) x <- y #<< Acceptance step

 v[i] <- x

}
52 / 87

In this algorithm:

where is a step size, and is a random sample from the normal distribution.

y = x + σw, w ∼ N (0, Id),

σ w

53 / 87

In this algorithm:

where is a step size, and is a random sample from the normal distribution.

If the new state is accepted, it becomes the next state of the Markov chain;

otherwise, the chain remains at .

y = x + σw, w ∼ N (0, Id),

σ w

y
x

53 / 87

Choice of and dimensionalityσ

54 / 87

Choice of and dimensionality
The selection of the standard deviation in the random-walk

Metropolis algorithm has been widely discussed. In this section, we

focus on Roberts, Gelman and Gilks 97 , which provides valuable

insight into how to make this choice.

σ

54 / 87

file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/10.1214/aoap/1034625254

Choice of and dimensionality
The selection of the standard deviation in the random-walk

Metropolis algorithm has been widely discussed. In this section, we

focus on Roberts, Gelman and Gilks 97 , which provides valuable

insight into how to make this choice.

The Metropolis-Hastings algorithm is affected by the curse of

dimensionality, directly tied to the choice of the step size, .

σ

σ

54 / 87

file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/10.1214/aoap/1034625254

Choice of and dimensionality
The selection of the standard deviation in the random-walk

Metropolis algorithm has been widely discussed. In this section, we

focus on Roberts, Gelman and Gilks 97 , which provides valuable

insight into how to make this choice.

The Metropolis-Hastings algorithm is affected by the curse of

dimensionality, directly tied to the choice of the step size, .

Balancing outflow and inflow (reversibility), can introduce challenges for

the algorithm's efficiency.

σ

σ

54 / 87

file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/10.1214/aoap/1034625254

Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time has been accepted.(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

55 / 87

Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time has been accepted.

Therefore, the probability of accepting a move is:

(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

P(∥X0∥ ≠ ∥X1∥).

55 / 87

Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time has been accepted.

Therefore, the probability of accepting a move is:

Due to reversibility, we have the following balance property:

(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

P(∥X0∥ ≠ ∥X1∥).

P(∥X0∥2 < ∥X1∥2) = P(∥X0∥2 > ∥X1∥2).

55 / 87

Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time has been accepted.

Therefore, the probability of accepting a move is:

Due to reversibility, we have the following balance property:

Thus, the acceptance probability equals:

(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

P(∥X0∥ ≠ ∥X1∥).

P(∥X0∥2 < ∥X1∥2) = P(∥X0∥2 > ∥X1∥2).

2 ⋅ P(∥X0∥2 > ∥X1∥2).

55 / 87

Average acceptance probability

For a Markov chain generated by the random-walk Metropolis algorithm

, if , it means the move at time has been accepted.

Therefore, the probability of accepting a move is:

Due to reversibility, we have the following balance property:

Thus, the acceptance probability equals:

Denote the proposed state as , then the acceptance probability is less than:

(Xm)m ∥X0∥ ≠ ∥X1∥ t = 1

P(∥X0∥ ≠ ∥X1∥).

P(∥X0∥2 < ∥X1∥2) = P(∥X0∥2 > ∥X1∥2).

2 ⋅ P(∥X0∥2 > ∥X1∥2).

Y1

2 ⋅ P(∥X0∥2 > ∥Y1∥2).

55 / 87

The proposed state is generated as follows:

Y1 = X0 + σW , W ∼ Nd(0,σId).

56 / 87

The proposed state is generated as follows:

Then ...

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

56 / 87

The proposed state is generated as follows:

Then ...

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

= 2 ⋅ P(∥X0∥2 > ∥X0∥2 + 2σX⊤
0 W + σ2∥W∥2)

56 / 87

The proposed state is generated as follows:

Then ...

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

= 2 ⋅ P(∥X0∥2 > ∥X0∥2 + 2σX⊤
0 W + σ2∥W∥2)

= 2 ⋅ P(−2σX⊤
0 W > σ2∥W∥2)

56 / 87

The proposed state is generated as follows:

Then ...

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

= 2 ⋅ P(∥X0∥2 > ∥X0∥2 + 2σX⊤
0 W + σ2∥W∥2)

= 2 ⋅ P(−2σX⊤
0 W > σ2∥W∥2)

= 2 ⋅ P(−2X⊤
0 e > σ∥W∥),

56 / 87

The proposed state is generated as follows:

Then ...

where follows a uniform distribution on the unit sphere.

Y1 = X0 + σW , W ∼ Nd(0,σId).

2 ⋅ P(∥X0∥2 > ∥Y1∥2) = 2 ⋅ P(∥X0∥2 > ∥X0 + σW∥2)

= 2 ⋅ P(∥X0∥2 > ∥X0∥2 + 2σX⊤
0 W + σ2∥W∥2)

= 2 ⋅ P(−2σX⊤
0 W > σ2∥W∥2)

= 2 ⋅ P(−2X⊤
0 e > σ∥W∥),

e = W/∥W∥

56 / 87

Dimensionality Effects

Assuming and , unless , the

acceptance probability decreases quickly.

X⊤
0 e = O(1) ∥W∥ = O(d1/2) σ = O(d−1/2)

57 / 87

Dimensionality Effects

Assuming and , unless , the

acceptance probability decreases quickly.

Conversely, if , the algorithm cannot make large moves,

revealing the curse of dimensionality.

X⊤
0 e = O(1) ∥W∥ = O(d1/2) σ = O(d−1/2)

σ = O(d−1/2)

57 / 87

Taking it Further

If follows a -dimensional standard normal distribution, the right-hand side

becomes:

X0 d

2E [Φ(−σ∥W∥/2)] .

58 / 87

Taking it Further

If follows a -dimensional standard normal distribution, the right-hand side

becomes:

A useful performance measure for the random-walk Metropolis algorithm is the

expected squared jump distance (ESJD):

There are few reliable measures for assessing the performance of

MCMC methods. ESJD is sometimes used because it is relatively

straightforward to analyze theoretically. However, like many

performance metrics, the direct link between ESJD and actual

algorithm efficiency remains unclear.

X0 d

2E [Φ(−σ∥W∥/2)] .

E [∥X1 −X0∥2] .

58 / 87

ESJD can be simplified as:

2E [∥X1 −X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

59 / 87

ESJD can be simplified as:

2E [∥X1 −X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

= E [Φ(−σ∥W∥/2) ⋅ σ2∥W∥2] .

59 / 87

ESJD can be simplified as:

This value is maximized when takes a specific value. At this maximum,

the average acceptance probability is approximately 23.4% (treating as

constant).

2E [∥X1 −X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

= E [Φ(−σ∥W∥/2) ⋅ σ2∥W∥2] .

σ∥W∥
σ∥W∥

59 / 87

ESJD can be simplified as:

This value is maximized when takes a specific value. At this maximum,

the average acceptance probability is approximately 23.4% (treating as

constant).

So we may use 23.4% ratio as a criterion of the choice of the tuning parameter

.

2E [∥X1 −X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

= E [Φ(−σ∥W∥/2) ⋅ σ2∥W∥2] .

σ∥W∥
σ∥W∥

σ

59 / 87

ESJD can be simplified as:

This value is maximized when takes a specific value. At this maximum,

the average acceptance probability is approximately 23.4% (treating as

constant).

So we may use 23.4% ratio as a criterion of the choice of the tuning parameter

.

We initially assumed , meaning . However, this

assumption can be relaxed. Empirically, it is believed that this criterion is

relatively robust across different settings.

2E [∥X1 −X0∥2, ∥X0∥2 > ∥X1∥2] = E [σ2∥W∥2, −2X⊤
0 e > σ∥W∥] .

= E [Φ(−σ∥W∥/2) ⋅ σ2∥W∥2] .

σ∥W∥
σ∥W∥

σ

X0 ∼ N (0, Id) Π = N (0, Id)

59 / 87

Summary

60 / 87

Summary

The choice of the step size is crucial for the performance of the algorithm. If

 is too large, the rejection rate increases. If is too small, the proposed state

will be too close to the current one, leading to slow exploration.

σ
σ σ

60 / 87

Summary

The choice of the step size is crucial for the performance of the

algorithm. If is too large, the rejection rate increases. If is too small, the

proposed state will be too close to the current one, leading to slow

exploration.

This impact can be quantified using the expected squared jump distance

(ESJD), a measure of how far the chain moves.

σ
σ σ

60 / 87

Summary

The choice of the step size is crucial for the performance of the

algorithm. If is too large, the rejection rate increases. If is too small, the

proposed state will be too close to the current one, leading to slow

exploration.

This impact can be quantified using the expected squared jump distance

(ESJD), a measure of how far the chain moves.

There is an optimal value of that maximizes the ESJD. When this is

achieved, the average acceptance rate is approximately 23.4%.

σ
σ σ

σ

60 / 87

Exercise 3.

61 / 87

Exercise 3.

3.1 Verify that

also satisfies the balance between inflow and outflow.

α(x, y) =
π(y) q(y,x)

π(x) q(x, y) + π(y) q(y,x)

61 / 87

Exercise 3.

3.1 Verify that

also satisfies the balance between inflow and outflow.

3.2 Write a code (R, python etc.) for a random walk Metropolis algorithm for the

distribution .

α(x, y) =
π(y) q(y,x)

π(x) q(x, y) + π(y) q(y,x)

π(x) ∝ 1
1+x2

61 / 87

Exercise 3.

3.1 Verify that

also satisfies the balance between inflow and outflow.

3.2 Write a code (R, python etc.) for a random walk Metropolis algorithm for the

distribution .

3.3 Discuss the use of a heavy-tailed distribution as the law of in terms of

the Expected Squared Jump Distance when the target distribution is standard

normal.

α(x, y) =
π(y) q(y,x)

π(x) q(x, y) + π(y) q(y,x)

π(x) ∝ 1
1+x2

W

61 / 87

2.3 Preconditioned Crank-Nicolson
(pCN) and Gaussian perturbation

62 / 87

2.3 Preconditioned Crank-Nicolson
(pCN) and Gaussian perturbation

The pCN algorithm uses an autoregressive model as its proposal

mechanism. This approach is particularly effective when the target

distribution is a small perturbation of a normal distribution.

62 / 87

2.3 Preconditioned Crank-Nicolson
(pCN) and Gaussian perturbation

The pCN algorithm uses an autoregressive model as its proposal

mechanism. This approach is particularly effective when the target

distribution is a small perturbation of a normal distribution.

A variant of the Metropolis algorithm is the preconditioned Crank-Nicolson

(pCN) method, often used in Bayesian computation. This method is well-suited

for high-dimensional problems.

62 / 87

2.3 Preconditioned Crank-Nicolson
(pCN) and Gaussian perturbation

The pCN algorithm uses an autoregressive model as its proposal

mechanism. This approach is particularly effective when the target

distribution is a small perturbation of a normal distribution.

A variant of the Metropolis algorithm is the preconditioned Crank-Nicolson

(pCN) method, often used in Bayesian computation. This method is well-suited

for high-dimensional problems.

The proposed state in the pCN algorithm is given by:

where is a tuning parameter.

y = ρx+ σ√1 − ρ2w, w ∼ N (0, Id),

ρ ∈ (−1, 1)

62 / 87

Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

defined as:

where is the prior distribution and represents the log-likelihood.

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

63 / 87

Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

defined as:

where is the prior distribution and represents the log-likelihood.

The goal is to compute the expectation of a function with respect to this

posterior distribution.

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

63 / 87

Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

defined as:

where is the prior distribution and represents the log-likelihood.

The goal is to compute the expectation of a function with respect to this

posterior distribution.

In typical Bayesian inverse problems, the parameter space is a high-

dimensional Euclidean space, with being a normal distribution.

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

P(dθ)

63 / 87

Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

defined as:

where is the prior distribution and represents the log-likelihood.

The goal is to compute the expectation of a function with respect to this

posterior distribution.

In typical Bayesian inverse problems, the parameter space is a high-

dimensional Euclidean space, with being a normal distribution.

In this setting, the random-walk Metropolis algorithm tends to perform poorly.

But how does the pCN algorithm fare?

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

P(dθ)

63 / 87

Bayesian Inverse Problem

In Bayesian statistics, we are concerned with the posterior distribution, which is

defined as:

where is the prior distribution and represents the log-likelihood.

The goal is to compute the expectation of a function with respect to this

posterior distribution.

In typical Bayesian inverse problems, the parameter space is a high-

dimensional Euclidean space, with being a normal distribution.

In this setting, the random-walk Metropolis algorithm tends to perform poorly.

But how does the pCN algorithm fare?

Assume and let .

Π(dθ) = ,
exp(l(θ))P(dθ)

∫Θ exp(l(θ))P(dθ)

P(dθ) l(θ)

P(dθ)

P = N (0, 1) σ = 1

63 / 87

Thanks to the autoregressive nature of the pCN model, the transition:

is reversible with respect to .

y = ρx+√1 − ρ2w, w ∼ N (0, Id),

N (0, Id)

64 / 87

Thanks to the autoregressive nature of the pCN model, the transition:

is reversible with respect to .

This means that only minimal traffic control is required for ensuring stability.

y = ρx+√1 − ρ2w, w ∼ N (0, Id),

N (0, Id)

64 / 87

Thanks to the autoregressive nature of the pCN model, the transition:

is reversible with respect to .

This means that only minimal traffic control is required for ensuring stability.

Specifically, the acceptance probability is given by:

where is the proposed state and is the current state.

y = ρx+√1 − ρ2w, w ∼ N (0, Id),

N (0, Id)

min {1, exp(l(θ∗) − l(θ))} ,

θ∗ θ

64 / 87

Thanks to the autoregressive nature of the pCN model, the transition:

is reversible with respect to .

This means that only minimal traffic control is required for ensuring stability.

Specifically, the acceptance probability is given by:

where is the proposed state and is the current state.

Even in high dimensions, sometimes this ratio tends to be stable, unlike the

behavior seen with the random-walk Metropolis algorithm.

y = ρx+√1 − ρ2w, w ∼ N (0, Id),

N (0, Id)

min {1, exp(l(θ∗) − l(θ))} ,

θ∗ θ

64 / 87

Summary

The pCN algorithm is specifically designed for handling Gaussian

perturbations.

65 / 87

Summary

The pCN algorithm is specifically designed for handling Gaussian

perturbations.

In high-dimensional settings, it often maintains a high acceptance

probability.

65 / 87

Summary

The pCN algorithm is specifically designed for handling Gaussian

perturbations.

In high-dimensional settings, it often maintains a high acceptance

probability.

However, it's important to note that its performance deteriorates

significantly when the target distribution deviates far from Gaussian. This

method is sometimes not robust.

65 / 87

Exercise 4.

66 / 87

Exercise 4.

4.1 Verify that the acceptance ratio for the preconditioned Crank-Nicolson

algorithm, with the target distribution

is given by

Π(dx) ∝ exp(−U(x) − x2/2)dx

α(x, y) = min {1, exp(−U(y) + U(x))} .

66 / 87

Exercise 4.

4.1 Verify that the acceptance ratio for the preconditioned Crank-Nicolson

algorithm, with the target distribution

is given by

4.2 Write code (in R, Python, etc.) for the preconditioned Crank-Nicolson

algorithm targeting the distribution . Conclude that the

performance, although not mathematically defined, is worse compared to the

random walk Metropolis algorithm.

Π(dx) ∝ exp(−U(x) − x2/2)dx

α(x, y) = min {1, exp(−U(y) + U(x))} .

π(x) ∝ 1
1+x2

66 / 87

Exercise 4.

4.1 Verify that the acceptance ratio for the preconditioned Crank-Nicolson

algorithm, with the target distribution

is given by

4.2 Write code (in R, Python, etc.) for the preconditioned Crank-Nicolson

algorithm targeting the distribution . Conclude that the

performance, although not mathematically defined, is worse compared to the

random walk Metropolis algorithm.

4.3 Discuss the reason behind this observation.

Π(dx) ∝ exp(−U(x) − x2/2)dx

α(x, y) = min {1, exp(−U(y) + U(x))} .

π(x) ∝ 1
1+x2

66 / 87

3. (Advanced) Non-reversiblility

67 / 87

3.1 Non-Reversibility in descrete time

68 / 87

3.1 Non-Reversibility in descrete time
From here, we'll explore non-reversible methods as an advanced

topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they offer a broader range of options and

can enhance the efficiency of certain sampling techniques.

68 / 87

3.1 Non-Reversibility in descrete time
From here, we'll explore non-reversible methods as an advanced

topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they offer a broader range of options and

can enhance the efficiency of certain sampling techniques.

Let’s now discuss the reversibility and non-reversibility in the Metropolis

algorithms.

68 / 87

3.1 Non-Reversibility in descrete time
From here, we'll explore non-reversible methods as an advanced

topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they offer a broader range of options and

can enhance the efficiency of certain sampling techniques.

Let’s now discuss the reversibility and non-reversibility in the Metropolis

algorithms.

Reversibility simplifies algorithm design but can sometimes lead to inefficiency.

68 / 87

3.1 Non-Reversibility in descrete time
From here, we'll explore non-reversible methods as an advanced

topic in this lecture. Although designing non-reversible algorithms is

technically challenging, they offer a broader range of options and

can enhance the efficiency of certain sampling techniques.

Let’s now discuss the reversibility and non-reversibility in the Metropolis

algorithms.

Reversibility simplifies algorithm design but can sometimes lead to inefficiency.

In certain cases, the Markov chain spends too much time exploring the same

areas, leading to longer travel distances before covering the state space

adequately.

68 / 87

Lifting

69 / 87

Lifting

One way to introduce non-reversibility is through a technique called lifting,

which involves extending the state space.

69 / 87

Lifting

One way to introduce non-reversibility is through a technique called lifting,

which involves extending the state space.

In lifting, we introduce a velocity variable and allow the chain to

switch directions at certain points.

v ∈ {−1,+1}

69 / 87

Lifting

One way to introduce non-reversibility is through a technique called lifting,

which involves extending the state space.

In lifting, we introduce a velocity variable and allow the chain to

switch directions at certain points.

For example, starting from , the algorithm can move to if

the proposal is accepted. If rejected, it stays at .

v ∈ {−1,+1}

(x, +1) (x+ |w|, −1)
(x, +1)

69 / 87

Lifting Visualization: Example by Gustafson 1996

Here’s an example of how lifting works in practice:

0 50 100 150 200

−15

−10

−5

0

5
Non-reversible
Reversible

index

g

70 / 87

Summary

71 / 87

Summary

Recall that the Metropolis algorithm is a two-step procedure: propose and

then accept or reject.

71 / 87

Summary

Recall that the Metropolis algorithm is a two-step procedure: propose and

then accept or reject.

The lifting procedure works as follows:

71 / 87

Summary

Recall that the Metropolis algorithm is a two-step procedure: propose and

then accept or reject.

The lifting procedure works as follows:

If the proposal is accepted, the direction remains unchanged. If it is

rejected, the sign is reversed.

71 / 87

Summary

Recall that the Metropolis algorithm is a two-step procedure: propose and

then accept or reject.

The lifting procedure works as follows:

If the proposal is accepted, the direction remains unchanged. If it is

rejected, the sign is reversed.

This method works well in one dimension. However, extending it to multiple

dimensions requires special care.

71 / 87

Some recent progress in puctures (K., Song 2023)

72 / 87

Some recent progress in puctures (K., Song 2023)

Extending the previous method to the multidimensional case in a

more useful direction was challenging. Due to time constraints, we

present the recent results in pictures only.

72 / 87

Multi-dim case: (Autoregressive)Rd

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

−10

−8

−6

−4

−2

x

y

73 / 87

Multi-dim case: (Beta-Gamma)Rd
+

0 2 4 6 8 10

0

2

4

6

8

10

−14

−12

−10

−8

−6

−4

x

y

74 / 87

Exercise 5.

75 / 87

Exercise 5.

5.1 Write code (in R, Python, etc.) for the random walk Metropolis algorithm

with lifting with targeting the distribution . Plot a path and

compare it to that of the random walk Metropolis algorithm.

π(x) ∝ 1
1+x2

75 / 87

3.2 Non-reversibility in continous time

76 / 87

3.2 Non-reversibility in continous time
Designing non-reversible methods has been challenging because it

requires balancing inflow and outflow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.

76 / 87

3.2 Non-reversibility in continous time
Designing non-reversible methods has been challenging because it

requires balancing inflow and outflow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.

Recently, algorithms that operate in continuous time, such as the Zig-Zag

Sampler and Bouncy Particle Sampler, have gained attention.

76 / 87

3.2 Non-reversibility in continous time
Designing non-reversible methods has been challenging because it

requires balancing inflow and outflow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.

Recently, algorithms that operate in continuous time, such as the Zig-Zag

Sampler and Bouncy Particle Sampler, have gained attention.

These algorithms define piecewise determinsitic Markov processes.

76 / 87

3.2 Non-reversibility in continous time
Designing non-reversible methods has been challenging because it

requires balancing inflow and outflow in many possible ways.

However, if we focus on continuous time processes, things become

simpler, as the behavior is essentially characterized around each

point.

Recently, algorithms that operate in continuous time, such as the Zig-Zag

Sampler and Bouncy Particle Sampler, have gained attention.

These algorithms define piecewise determinsitic Markov processes.

These methods remove the need to define discrete-time steps and allow the

chain to move continuously through the state space.

76 / 87

A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a diffusion term.

77 / 87

A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a diffusion term.

This process has been highlighted in Monte Carlo literature, specifically in

Peters and de With 2012 and Michel et al. 2014 .

77 / 87

file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html

A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a diffusion term.

This process has been highlighted in Monte Carlo literature, specifically in

Peters and de With 2012 and Michel et al. 2014 .

The PDMP is characterised by being non-reversible and distinct from

traditional Markov chain Monte Carlo (MCMC) methods, as it is a continuous-

time process.

77 / 87

file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html

A piecewise deterministic Markov process (PDMP) is a Markov process

consisting of a drift term and a Jump term, without a diffusion term.

This process has been highlighted in Monte Carlo literature, specifically in

Peters and de With 2012 and Michel et al. 2014 .

The PDMP is characterised by being non-reversible and distinct from

traditional Markov chain Monte Carlo (MCMC) methods, as it is a continuous-

time process.

Also PDMPs seem to be suitable for a sub-sampling implementation.

77 / 87

file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html
file:///Users/kengokamatani/Library/CloudStorage/Dropbox/Research/Writing/20230901Talks/slides/20240923ULM-IntroMCMC.html

PDMP triplet Davis1984

Let be the state space. The triplet consists of:E (φ,λ,Q)

78 / 87

PDMP triplet Davis1984

Let be the state space. The triplet consists of:

Flow: , where and .

E (φ,λ,Q)

(t,x) ↦ φt(x) φ0(x) = x φt(φs(x)) = φt+s(x)

78 / 87

PDMP triplet Davis1984

Let be the state space. The triplet consists of:

Flow: , where and .

Conditional intensity: .

E (φ,λ,Q)

(t,x) ↦ φt(x) φ0(x) = x φt(φs(x)) = φt+s(x)

λ(x) ≥ 0

78 / 87

PDMP triplet Davis1984

Let be the state space. The triplet consists of:

Flow: , where and .

Conditional intensity: .

Jump size: , which is a Markov kernel.

E (φ,λ,Q)

(t,x) ↦ φt(x) φ0(x) = x φt(φs(x)) = φt+s(x)

λ(x) ≥ 0

Q(x,A)

78 / 87

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

79 / 87

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

79 / 87

This determines up to time .

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

79 / 87

This determines up to time .

Next, we repeat the following for :

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

n = 2, 3, 4,…

En ∼ E(1) ⇝ Tn = inf{t > Tn−1 : En ≤ ∫
t

Tn−1

λ(φs−Tn−1(x(Tn−1)))ds}

79 / 87

This determines up to time .

Next, we repeat the following for :

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

n = 2, 3, 4,…

En ∼ E(1) ⇝ Tn = inf{t > Tn−1 : En ≤ ∫
t

Tn−1

λ(φs−Tn−1(x(Tn−1)))ds}
⇝ x(t) = φt−Tn−1(x(Tn−1)) (Tn−1 < t < Tn), x(Tn) ∼ Q(x(Tn−), ⋅)

79 / 87

This determines up to time .

Next, we repeat the following for :

This determines .

1

E1 ∼ E(1) ⇝ T1 = inf{t > 0 : E1 ≤ ∫
t

0
λ(φs(x))ds}

⇝ x(t) = φt(x) (0 < t < T1), x(T1) ∼ Q(x(T1−), ⋅)

x(t) T1

n = 2, 3, 4,…

En ∼ E(1) ⇝ Tn = inf{t > Tn−1 : En ≤ ∫
t

Tn−1

λ(φs−Tn−1(x(Tn−1)))ds}
⇝ x(t) = φt−Tn−1(x(Tn−1)) (Tn−1 < t < Tn), x(Tn) ∼ Q(x(Tn−), ⋅)

x(t)

1 If (i.e., if the process is non-explosive), then is not defined

for .

P(supn Tn = ∞) ≠ 1 x(t)
t ∈ R+

79 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .Rd × Rd

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Flow: fixed. .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Flow: fixed. .

There are are two souces of jumps:

Conditional intensity: .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Flow: fixed. .

There are are two souces of jumps:

Conditional intensity: .

Jump size: fixed. .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

x v ↦ v− 2 × v⊤n(x) n(x)

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Flow: fixed. .

There are are two souces of jumps:

Conditional intensity: .

Jump size: fixed. .

and

Conditional intensity: .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

x v ↦ v− 2 × v⊤n(x) n(x)

ρ

80 / 87

Example Bouncy particle sampler Peters and de With (2012)

The process is defined in .

We are interested in . Let .

: State variable

: Velocity vector

Flow: fixed. .

There are are two souces of jumps:

Conditional intensity: .

Jump size: fixed. .

and

Conditional intensity: .

Jump size: fixed. .

Rd × Rd

Π(dx) = exp(−U(x))dx n(x) = ∇U(x)/|∇U(x)|

x

v

v x′ = v

λ(x) = (v⊤∇U(x))+

x v ↦ v− 2 × v⊤n(x) n(x)

ρ

x v ∼ N (0, Id)

80 / 87

Here’s an example in three dimensions:

81 / 87

Extended generator

82 / 87

Extended generator

A continuous Markov process is characterized by the short-term

behavior of the process. For a Markov process , this is

essentially the derivative of with respect to at

.

(Zt)
E[f(Zt) ∣ Z0 = z] t

t = 0

82 / 87

Extended generator

A continuous Markov process is characterized by the short-term

behavior of the process. For a Markov process , this is

essentially the derivative of with respect to at

.

where and , and is

the refresh operator which changes the direction randomly.

(Zt)
E[f(Zt) ∣ Z0 = z] t

t = 0

Lf(x, v) = v⊤∂xf(x, v) + (v⊤∇U(x))+ (B− id)f(x, v) + ρ (R− id)f(x, v)

Bf(x, v) = f(x,B(x)v) B(x)v = (I − 2n(x)n(x)⊤)v R
v

82 / 87

Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

83 / 87

Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

The process is defined in .Rd × {−1,+1}d

83 / 87

Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

The process is defined in .

Flow: fixed. .

Rd × {−1,+1}d

v x′ = v

83 / 87

Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

The process is defined in .

Flow: fixed. .

There are -sources of jumps:

Conditional intensity: .

Rd × {−1,+1}d

v x′ = v

d

λi(x) = (vi∂iU(x))+

83 / 87

Example Zig-Zag sampler Bierkens, Fearnhead, and Roberts (2019)

The process is defined in .

Flow: fixed. .

There are -sources of jumps:

Conditional intensity: .

Jump size: fixed. Switch the sign of -th component of .

Rd × {−1,+1}d

v x′ = v

d

λi(x) = (vi∂iU(x))+

x i v

83 / 87

Here’s an example of the Zig-Zag Sampler in three dimensions:

84 / 87

Extended generator

State space .

where and switches the -th coordinate of .

Rd × {−1,+1}d

Lf(x, v) = v⊤∂xf(x, v) +
d

∑
i=1

(vi∂iU(x))+ (Fi − id)f(x, v)

Fif(x, v) = f(x,Fiv) Fi i v

85 / 87

Motivation for using PDMPs

Non-reversible Avoid diffusive behaviour (?)

Scalable (I do not have enough time to explain this.)

(Anyway,) Different from MCMC

⇝

86 / 87

Motivation for using PDMPs

Non-reversible Avoid diffusive behaviour (?)

Scalable (I do not have enough time to explain this.)

(Anyway,) Different from MCMC

Packages

RZigZag : Code: R, Algorithms: BPS, ZZ

⇝

86 / 87

https://cran.r-project.org/web/packages/RZigZag/index.html

Motivation for using PDMPs

Non-reversible Avoid diffusive behaviour (?)

Scalable (I do not have enough time to explain this.)

(Anyway,) Different from MCMC

Packages

RZigZag : Code: R, Algorithms: BPS, ZZ

PDSampler.jl : Code: Julia, Algorithms: BPS

⇝

86 / 87

https://cran.r-project.org/web/packages/RZigZag/index.html
https://alan-turing-institute.github.io/PDSampler.jl/v0.1/examples/ex_gbps1.html

Motivation for using PDMPs

Non-reversible Avoid diffusive behaviour (?)

Scalable (I do not have enough time to explain this.)

(Anyway,) Different from MCMC

Packages

RZigZag : Code: R, Algorithms: BPS, ZZ

PDSampler.jl : Code: Julia, Algorithms: BPS

ZigZagBoomerang : Code: Julia, Algorithms: BPS, ZZ, Boomerang

⇝

86 / 87

https://cran.r-project.org/web/packages/RZigZag/index.html
https://alan-turing-institute.github.io/PDSampler.jl/v0.1/examples/ex_gbps1.html
https://github.com/mschauer/ZigZagBoomerang.jl

Motivation for using PDMPs

Non-reversible Avoid diffusive behaviour (?)

Scalable (I do not have enough time to explain this.)

(Anyway,) Different from MCMC

Packages

RZigZag : Code: R, Algorithms: BPS, ZZ

PDSampler.jl : Code: Julia, Algorithms: BPS

ZigZagBoomerang : Code: Julia, Algorithms: BPS, ZZ, Boomerang

Additionally, check out the brand new pdmp-jax by Charly Andral!

⇝

86 / 87

https://cran.r-project.org/web/packages/RZigZag/index.html
https://alan-turing-institute.github.io/PDSampler.jl/v0.1/examples/ex_gbps1.html
https://github.com/mschauer/ZigZagBoomerang.jl
https://pypi.org/project/pdmp-jax/

Summary

87 / 87

Summary

The ergodicity of Markov chains is demonstrated through non-singularity and

invariance.

87 / 87

Summary

The ergodicity of Markov chains is demonstrated through non-singularity

and invariance.

Markov Chain Monte Carlo (MCMC) methods can approximate integrals,

and we understand both how to design them and why they converge.

87 / 87

Summary

The ergodicity of Markov chains is demonstrated through non-singularity

and invariance.

Markov Chain Monte Carlo (MCMC) methods can approximate integrals,

and we understand both how to design them and why they converge.

As an advanced topic, we treat Continuous-time methods, such as the Zig-Zag

Sampler and Bouncy Particle Sampler.

87 / 87

