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Virtual materials testing
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Tomographic image data

Wagner, Bohn, GeBBwein, Neumann, Osenberg, Hilger,
Manke, Schmidt, Binder. ACS Appl. Energy Mater. 3 (2020),
12565—-12574.

Osenberg, Hilger, Neumann, Wagner, Bohn, Binder,

Schmidt, Banhart, Manke. J. Power Sources 570 (2023),
233030.

Neumann, Wetterauer, Osenberg, Hilger, Grafensteiner,
HierarChica”y structured Wagner, Bohn, Binder, Manke, Carraro, Schmidt. Int. J.
NMC-cathode Solids Struct. 280 (2023), 112394
Neumann, Philipp, Neusser, Haringer, Binder, Kranz. Batter.
Supercaps 7 (2024), 7:¢202300409.
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Carbon binder domain surrounding active material

= Active material particles are
embedded in a nanoporous
carbon binder domain

= The nanostructure is
resolved by FIB-SEM
tomography

= Voxel size: 20 nm

Cadiou, Douillard, Willot, Badot, Lestriez, Maire. J. Electrochem. Soc. 167 (2020), 140504.
Kroll, Karstens, Cronau, Hoéltzel, Schlabach, Nobel, Redenbach, Roling, Tallarek. Batter. Supercaps 4
(2021), 1363—1373. 6/29
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Segmentation of graphite particles

= |arge oblate-shaped objects
represent graphite particles

= The finer structure represents
carbon black

= |Image segmentation performed by
llastik using hand-labeled slices

Beuttenmueller, Wolny, Zhang, Koethe, Hamprecht, Kreshuk. (2019). Nature Methods, 16:1226—1232.
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Modeling idea

Three-step
approach

1. Graphite
particles are
modeled by a
Boolean model,
where the grains
are given by
oblate spheroids
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Modeling idea

Three-step

approach

3. Large pore
regions are
modeled by a
second Boolean
model with
spherical grains
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Step 1: Graphite particles—model definition

Boolean model with oblate spheroids as grains

® Let Xy, Xz, ... be a homogeneous Poisson point process in R3 with intensity
Ax > 0. Let E be a random oblate spheroid centered at the origin with random
equatorial radius A and pole-to-centre distance C < A. Moreover, let the
direction of the shorter semi-axis be uniformly distributed on the unit sphere.
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Boolean model with oblate spheroids as grains

® Let Xy, Xz, ... be a homogeneous Poisson point process in R3 with intensity
Ax > 0. Let E be a random oblate spheroid centered at the origin with random
equatorial radius A and pole-to-centre distance C < A. Moreover, let the
direction of the shorter semi-axis be uniformly distributed on the unit sphere.

= A=max{W;, Wo} and C = min{ W;, W}, where W;, W, are independent with
Wi ~ (e, ag), Wo ~ T'(ag, ag) for model parameters o, ap, az > 0.

= Fori.i.d copies Ej, E5, ... of E, define the union of graphite particles by
= = U;?i1)(j + E;
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Step 1: Graphite particles—model fitting

Graphite particles extracted from image data
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Step 1: Graphite particles—model fitting

Fit parameters \x, a1, as, as

= Fitting is based on volume fraction, surface area per unit volume, specific
integral of mean curvature and the specific Euler number, which are estimated
from image data.
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Step 1: Graphite particles—model fitting

Fit parameters \x, a1, as, as

= Fitting is based on volume fraction, surface area per unit volume, specific
integral of mean curvature and the specific Euler number, which are estimated

from image data.

= The above mentioned descriptors can be expressed as expectations of
functions that depend on A, C, and Ax (Mile’s formulae).

= Numerical fitting by the Nelder-Mead algorithm.
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Step 2: PVdF binder and carbon—model definition
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Step 2: PVdF binder and carbon—model definition

Excursion set of a Gaussian random field

= LetZ={Z(t):t € R3} be a stationary and isotropic Gaussian random field
with covariance function p such that E[Z(t)] = 0 and Var[Z(t)] = 1 for each
t € RS
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Step 2: PVdF binder and carbon—model definition

Excursion set of a Gaussian random field

= LetZ={Z(t):t € R3} be a stationary and isotropic Gaussian random field
with covariance function p such that E[Z(t)] = 0 and Var[Z(t)] = 1 for each
t € RS

= Define the union of PVdF binder and carbon by =5 \ =4, where
So={teR3: Z(t) > u}

14/29
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Step 2: PVdF binder and carbon—-model fitting

Fitting the level ; and the covariance function p

Manually selected
homogeneous cutout
of PVdF binder and
carbon
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Step 2: PVdF binder and carbon—-model fitting

Fitting the level ; and the covariance function p

= The level p is fitted such that the expected volume fraction in the model
coincides with the volume fraction estimated from image data.
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Step 2: PVdF binder and carbon—-model fitting

Fitting the level ; and the covariance function p

= The level p is fitted such that the expected volume fraction in the model
coincides with the volume fraction estimated from image data.

= For fitting p, we use
et
1t

for each h = |s — t|, where V5, is the volume fraction of =».

p(h)
C(h):=P(s€=p,t€=p) = V2 +/ dt,
0
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Step 2: PVdF binder and carbon—-model fitting

Fit of p
1 ‘ ‘ ‘ Consider the parametric
——non-parametric estimator of p family of covariance functions
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Step 3: Large pore regions—model definition

Boolean model with spherical grains

® Let Yy, Ys,... be a homogeneous Poisson point process in R3 with intensity
Ay > 0. Let Ry, Ry, ... be i.i.d random variables with Ry ~ Exp(#) for some
6> 0.
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Step 3: Large pore regions—model definition

Boolean model with spherical grains

® Let Yy, Ys,... be a homogeneous Poisson point process in R3 with intensity
Ay > 0. Let Ry, Ry, ... be i.i.d random variables with Ry ~ Exp(#) for some
6> 0.

= Define the union of large pore regions by =3 = U, Y; + b(o, R;), where b(o, r)
is the open ball centered at the origin with radius r > 0.

= Model for the binder-additive phase (including graphite particles):

—==1U (52 \ 53). 150
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Step 3: Large pore regions—model fitting

= For fixed 6, we determine Ay such that the expected volume fraction of the
model coincides with the value estimated from image data.

= Notethat V=PoeZ)=P(0e=1U(Z2NZE)) = Vs + Vo(1 — Vi)(1 — Va)
and 3
Va=1—exp (Ayg—;r).
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Step 3: Large pore regions—model fitting

Fitting Ay and 6

= Based on simulated model realizations, the parameter 6 is determined in order
to minimize the L;-distance to the continuous pore size distribution estimated
from image data.
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Step 3: Large pore regions—model fitting

Fitting Ay and 6

= Based on simulated model realizations, the parameter 6 is determined in order
to minimize the L;-distance to the continuous pore size distribution estimated
from image data.

®m  The continuous pore size distribution is defined as
E [1/3((50 © B(o,r)) & B(o, r))}
E(v3(=°)) ’

where B(o. r) denotes the closed ball centered at the origin with radius r > 0. =20/29
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Step 3: Large pore regions—model fitting

Fitting Ay and 6
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Model validation

Visual comparison

Model realization
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Model validation

Comparing morphological descriptors of measured and simulated

nanostructures

= mean geodesic tortuosity 7 quantifying the length of shortest pathways
= constrictivity 5 measuring the degree of bottleneck effects

= Two-point coverage probability function C and specific surface area S

Peyrerga, Jeulin (2013). Image Anal. Stereol., 32:27—-43.
Neumann, Hirsch, Stanék, Bene§, Schmidt (2019). Scand. J. Stat., 46:848—884. 23/29
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Model validation

Mean geodesic tortuosity Constrictivity
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Model validation
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Model validation

Two-point coverage functions
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Effective properties

The M-factor is defined by
M = Ueﬁ"/UOa

where o.g is the effective and oy is the intrinsic conductivity (diffusivity).
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Effective properties

The M-factor is defined by
M = Ueﬁ"/UOa

where o.g is the effective and oy is the intrinsic conductivity (diffusivity).

= Here: electric conduction in the solid phase and diffusion of ions in the pore
space.
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Effective properties

The M-factor is defined by
M = Ueﬁ"/UOa

where o.g is the effective and oy is the intrinsic conductivity (diffusivity).

= Here: electric conduction in the solid phase and diffusion of ions in the pore
space.

= M-factor is numerically simulated.

Cooper, Bertei, Shearing, Kilner, Brandon. SoftwareX 5 (2016), 203-210. 27/29
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The role of graphite particles

Simulation study

0.4

—pore phase ®  The volume fraction of graphite
—solid phase particles is varied by varying \x.

= 0.2
= All other model parameters

/,/ remain unchanged.
0

volume fraction of graphite
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Conclusions

= A stochastic 3D model has been developed for the carbon binder
domain in lithium-ion battery electrodes.
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Conclusions

= A stochastic 3D model has been developed for the carbon binder
domain in lithium-ion battery electrodes.

= Boolean models have been combined with excursion sets of
Gaussian random fields.

= Model fitting is performed based on segmented 3D image data.

= The validated model is used to study the influence of the amount
of graphite particles on effective properties.

Gréafensteiner, Osenberg, Hilger, Bohn, Binder, Manke, Schmidt, Neumann, arXiv:2409.11080.
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