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Abstract. The paper considers the problem of anomaly detection in 3D images of fibre materials. 
The spatial Stochastic Expectation Maximisation algorithm and Adaptive Weights Clustering 
are applied to solve this problem. The initial 3D grey scale image was divided into small cubes 
subject to clustering. For each cube clustering attributes values were calculated: mean local 
direction and directional entropy. Clustering is conducted according to the given attributes. The 
proposed methods are tested on the simulated images and on real fibre materials. 

Introduction. 
Nowadays, there exists a large amount of novel materials with interesting physical properties. For 
instance, reinforcement of polymers with fibres significantly increases the mechanical properties of the 
materials. The materials’ performance is determined mostly by their composition as well as by allocation 
and directions of the reinforcing fibres.  
 
Due to the production process, an anomaly region may be formed in the material. We define it as an 
area where the distribution of fibre directions differs from the remaining material. To keep the stated 
material’s properties, it is necessary to identify regions with untypical fibre distribution. For this 
purpose, high-resolution microcomputer tomography reaching a level of microns [1, 2] is used to 
observe the fibre system in a composite sample, cf. Figure 1 (right). 

 Our main task is then to find the areas with anomalous directional properties of fibres in the 3D 
image. This is done by means of cluster analysis dividing the whole image volume into two clusters: the 
smaller “anomaly” region and the bigger “normal” material. 



 
 
 
 
 
 

 
 

Figure 1. 3D images a) RSA generated fibres, size in voxels: 200x200x300, b) real glass-fibre reinforced 
data, size in voxels: 1500x1000x1000. Courtesy of the Composite Materials Institute (IVW), Kaiserslautern 
 
The paper consists of three parts. In the first part, we introduce clustering criteria. In the second part, 

we consider two clustering methods: the spatial Stochastic Expectation Maximisation (SEM) [3, 4] and 
the Adaptive Weights Clustering (AWC) [5], and also test them on simulated data. In the third part, we 
apply our algorithms to real fibre data and compare their performance. 

1.  Clustering criteria. 
Let us have a 3D image of the fibre material. It is assumed that it may contain a region where the local 
distribution of fibres does not coincide with their distribution throughout the remaining material volume. 
It is necessary to determine the criteria according to which such an anomaly region can be located 
automatically. In this study, the criteria are chosen to be the entropy of the local directional distribution 
[6, 7] and the mean of the local fibre directions.  

The necessary 3D image preprocessing prior to our clustering was performed by the Modular 
Algorithms for Volume Images (MAVI) software by using the method based on the Hessian matrix 
presented in [8]. Using MAVI, the local directions (𝑥, 𝑦, 𝑧)'  were obtained as the mean in a small 
neighborhood (small cubes 𝑠)  in Figure 1). Thus, one calculated local direction corresponds to a cube 
of voxels which is done for the sake of computational efficiency. 

1.1.  Mean of local direction of fibres. 
This criterion is calculated as the coordinate wise mean value of local directions (𝑥, 𝑦, 𝑧)' in the 

scanning window 𝑠). Let the local directions 𝑥*, 𝑦*, 𝑧* , 𝑖 = 1…𝑁, be given in 𝑠). Then the mean vector 
(X, Y, Z) of local directions is defined as:  
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This criterion has three components, so clustering according to the mean of local fibre directions is 
carried out in the space R3. 

1.2.  Entropy of local directional distribution. 
The differential (Shannon) entropy is represented as a functional: 

𝐻 = 𝐻 𝑓 = − 𝑓 𝑥 ln 𝑓 𝑥 𝑑𝑥
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, (1) 



 
 
 
 
 
 

where S2
 is the 2-dimensional unit sphere in the Euclidean space with geodesic metric ρ, and 𝑓(𝑥) is 

directional distribution density with respect to the surface area measure dx. 
 
1.2.1 Nearest neighbour entropy estimator. 
The following idea for estimation of the entropy goes back to Dobrushin [9]. Assume we have a sample 
of random direction vectors X3, … , XB, 𝑁 ≥ 2  on the sphere with their geographic reference points lying 
in 𝑠). We calculate 𝜌* = min 𝜌 𝑋*, 𝑋H , 𝑗 ∈ {1, … , 𝑁\{𝑖}  and define:  

𝜌 = 𝜌*
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The nearest neighbour entropy estimator is given by 
𝐻 = 2 ln 𝜌 + ln 𝑐3 + 𝛾 + ln	(𝑁 − 1), (2) 

where 𝛾 ≈ 0,5772 is the Euler’s constant and 𝑐3 ≈ 1,1447. 
Here we consider clustering of the image volume according to the above local entropy estimate and 

vectors of the mean of local directions. 

2.  Clustering. 
While calculating the entropy of local directions in fibre materials, it turned out that the entropy 

histogram in a homogeneous fibrous medium has one mode, and two modes if a large enough anomaly 
is present cf. [4]. Hence, it is reasonable to consider the problem of separation of modes in a mixture of 
two normal distributions in order to perform the desired clustering into an anomaly and a normal material 
volume. In this investigation, the cluster objects are windows 𝑠), in which the values of the clustering 
criteria  (𝐻, 𝑋, 𝑌, 𝑍 ') were calculated as mentioned above. To solve this clustering problem, the spatial 
modification of SEM [4] and AWC algorithms are used. 

2.1.  RSA simulated image data 
Now we illustrate the use of spatial SEM and AWC methods on a simulated 3D fibre image, compare 
Figure 2. We choose a layered random sequential absorption (RSA, see [10, 11]) model. That is, the 
fibres are added randomly to the existing material, so that they cannot intersect each other. The clustering 
results for both methods are shown in Figures 3-5. There, the red dots refer to the anomaly region, blue 
ones are homogeneous material, and the green dots represent the third cluster (artefact) found by AWC.  
 

 
Figure 2. RSA data 



 
 
 
 
 
 

 
Figure 3. Clustering RSA data with entropy attribute. Algorithms: a) spatial SEM, b) AWC 

 
Figure 4. Clustering RSA data with mean of local direction attribute. Algorithms: a) spatial SEM, b) AWC 

 
Figure 5.  Results Clustering RSA data with mean local direction and entropy attributes.  

Algorithms: a) spatial SEM, b) AWC 
 

In Figure 4, the mean of local directions is used as criterion and both algorithms detect the anomaly 
up to one cube 𝑠). On the other hand, when entropy or mean of local directions with entropy are applied 
as a criterion for clustering, the AWC algorithm finds 3 clusters (instead of two) and has a large error. 

Thus, the obtained results demonstrate a better efficiency of spatial SEM in comparison to AWC in 
performing the anomaly detection for these data. The initial number of classes in the spatial SEM is 
the only parameter to be tuned. It is chosen to be 10. The AWC’s only setting is parameter l; its 
values are given in Table 1.  

 



 
 
 
 
 
 

Clustering attribute Entropy Mean of local direction Mean local direction and entropy 
RSA data 9.2 10 0.2 
Real fibre data 19.27 4.27 1.21 

 
Table 1.  Values of parameter l for the AWC algorithm used in our calculations 

2.2 Real fibre materials. 
Appling our approach to detect anomalies in a 3D image of a real glass-fibre reinforced composite 
material shown in Figure 1 b). The results of the clustering are presented in Figures 6-8. The color 
encoding is as follows: red stands for anomaly, blue for the homogeneous material, and all other colors 
(green, yellow, etc.)  indicate different artefact clusters found by AWC. 

 
Figure 6. Clustering real fibre data with entropy attribute. Algorithms: a) spatial SEM, b) AWC 

 
Figure 7. Clustering real fibre data with mean of local direction attribute. Algorithms: a) spatial SEM, b) AWC 

 



 
 
 
 
 
 

Figure 8. Clustering real fibre data with mean of local direction and entropy attributes. Algorithms: a) spatial 

SEM, b) AWC 

The estimated anomaly region is also located in the center of the considered part of the real glass 
fibre-reinforced composite material. As one can see in the figures, the SEM algorithm accurately 
determines an anomaly region. Moreover the application of various clustering criteria helps to detect 
various types of anomaly, that is: the entropy detects a vortex-like anomaly, whereas changes in the 
average direction of fibres are best detected by the attribute of the mean of local direction. The AWC 
algorithm showed low efficiency with real image data. For any clustering criteria, we found at least 17 
clusters which cannot be easily subdivided into two clear groups pertaining to anomaly and to the normal 
material, while the SEM algorithm is designed to find only these two classes. Therefore, the spatial SEM 
algorithm is preferable for this task. 

Conclusion. 
As a result of this research, a software system was developed to identify an anomaly region in 3-
dimensional grayscale images of fibre materials. The software system consists of an algorithmic 
complex. It involves the computation of local directions in MAVI, the calculation of clustering criteria 
and the spatial SEM algorithm. 
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