

Markets, Portfolios and Arbitrage

Skander Souissi | 13. July 2015 | Institute of Stochastics, Faculty of Mathematics and Economics

Seminar Supervisor: Prof. Dr. Evgeny Spodarev Seminar Advisor: Alexander Nerlich

Outline

Motivation

Continous time model

Arbitrage

Equivalent martingale Measure

References

Motivation

- Let {S_t}_{t∈ℕ0} be the daily price process of a risky asset A.
- We view {S_t}_{t∈N₀} as a (discrete) stochastic process on some filtred probability space (Ω, F, P, (F_t)_{t∈N₀}) encorporating the states of the world.
- ► At a given day *t*, a financial analyst wants to determine the fair price S_{t+1} of A.
- Since it is risky, the expected return R_t of A should exceed the risk-free rate r_t, i.e.

 E [1 + R_t|S_t] = (1 + r_t)(1 + µ) for some µ > 0
- ► This implies $\mathbb{E}[R_t|S_t] \approx r_t + \mu$. We can consider μ as a 1-day risk premium.

Motivation

- ► To price *A* correctly, the analyst has to consider $\mathbb{E}\left[\frac{1}{1+R_t}S_{t+1}|S_t\right] = S_t.$
- ► ~→ Problem: The left hand side is complicated to evaluate.
- ▶ \rightsquigarrow Idea: Perform a transformation in order to eliminate the risk premium μ .
- Ideally find some probability P̃ ~ P describing the odds of some "risk-neutral world "where E [1/(1+r_t S_{t+1} | S_t] = S_t.

Defintion of Continous time market

- ► let $B(t) = (B_1(t), ..., B_m(t))$ be *m*-dimensional Brownian motion, $0 \le t \le T$ on $(\Omega, \mathcal{F}, \mathbb{P})$.
- ► $\mathbb{F}^m = \{\mathcal{F}_t^m \forall t \in [0, T] : \mathcal{F}_t^m = \sigma(B_s : 0 \le s \le t)\}$ represents the flow of information generated by $\{B(t)\}_{t \in [0, T]}$.
- A market is an \mathcal{F}_t^m -adapted (n + 1)-dimensional Ito-process $X(t) = (X_0(t), X_1(t), \dots, X_n(t))$ such that

$$dX_0(t) = \rho(t,\omega)X_0(t)dt; X_0(0) = 1$$

and

$$dX_i(t) = \mu_i(t,\omega) + \sigma_i(t,\omega) dB_t^m; X_i(0) = x_i,$$

for $i = 1, ..., n$

where $\mu(t, \omega) \in \mathbb{R}^{n \times 1}$, $\sigma(t, \omega) \in \mathbb{R}^{n \times m}$ meet the existence conditions and $\rho(t, \omega)$ is bounded.

Portfolio in the market

- A portfolio θ(t) = (θ₀(t, ω), θ₁(t, ω)..., θ_n(t, ω)) in the market {X(t)}_{t∈[0,T]} is a (t, ω)-measurable and *F*^m_t-adapted stochastic process for 0 ≤ t ≤ T.
- ► The value at time *t* of a portfolio $\theta(t)$ is $V(t, \omega) = \theta(t, \omega) \cdot X(t, \omega), \forall t \in [0, T].$
- The gain process of the portfolio $\theta(t)$ is defined by

$$G(t) = \int_0^t \mu(s) \cdot heta(s) \mathrm{d}s + \int_0^t \sigma(s) heta(s) \mathrm{d}B.$$

In order for *G* to be well defined, we require that $\int_0^t |\mu(s)\theta(s)| \mathrm{d}s < \infty \text{ and } \int_0^t ||\sigma(s)\theta(s)||^2 \mathrm{d}s < \infty \text{ a.s.}$

Selffinancing strategy and normalized Market

- ► A Portfolio $\theta(t)$ is called self-financing if V(t) = V(0) + G(t) or dV(t) = dG(t).
- Equivalently we can write $dV(t) = \theta(t)dX(t)$.
- ► Let $X_0(t) = exp(\int_0^t \rho(s, \omega) dt) > 0$, then the Process $\overline{X}(t) = \left(1, \frac{X_1(t)}{X_0(t)}, \dots, \frac{X_n(t)}{X_0(t)}\right)$ is called the normalized market.
- We think of the risk-free asset as a bank account paying interest with return rate ρ(t, ω).

Numeraire Invariance

- ► The portfolio $\theta(t)$ is self-financing with respect to $\{X(t)\}_{t\in[0,T]}$ if and only if it is self-financing with respect to $\{\overline{X}(t)\}_{t\in[0,T]}$.
- ► Proof:

$$\overline{V}_t(t) = \theta(t)\overline{X}(t) = \theta(t)\xi(t)X(t) = \xi(t)V(t)$$

It follows with Ito-lemma

$$d\overline{V}(t) = \xi(t)dV(t) + V(t)d\xi(t)$$

= $\xi(t)\theta(t)dX(t) - \theta(t)X(t)\rho(t)\xi(t)dt$
= $\xi(t)\theta(t)(dX(t) - \rho(t)X(t)dt)$
= $\theta(t)d\overline{X}(t).$

Doubling strategy and Admissible Portfolio

- is imposing self-financing condition on a portfolio sufficient for a consistent market model?
- Example :
 - Iet {B(t)}_{t∈[0,T]} be a one dimensional Brownian motion on some probability space (Ω, F, ℙ).
 - $X_0 \equiv 1 \ \forall t \in [0, T].$
 - $dX_1(t) = X_1(t) dB(t)$, $X_1(0) = 1$.
 - let $\tau := \inf\{t : \int_0^t (T s)^{-1/2} dB(s) = \alpha\}$ for some $\alpha > 0$.
 - τ is a stopping time such that $0 < \tau < T$ a.s.
 - Set $\theta_1(t) = \frac{1}{X_1(t)\sqrt{T-t}}$ if $0 \le t \le \tau$ and 0 else.
 - Set $\theta_0(t) = -\theta_1(t)X_1(t) + \int_0^t \theta_1(s)dX_1(s)$ for $t \in [0, T]$.
 - $\theta(0).X(0) = 0$ and $\theta(T).X(T) = \alpha$ a.s.

Doubling strategy and Admissible Portfolio

- Despite the natural assumption on the prices dynamics, we can reach any value α without any initial investment.
- Further restrictions on the portfolio are needed.
- A portfolio θ(t) is called admissible if it satisfies the condition for the existence of the gain process and its value process V^θ(t) is lower bounded, i.e. V^θ(t, ω) ≥ −K for some real number K > 0 and for a.a. (t, ω) ∈ [0, T] × Ω.

Arbitrage

- An admissible portfolio θ(t) is called an arbitrage in the market {X(t)}_{t∈[0,T]} if V^θ(t) satisfies
 V^θ(0) = 0 and V^θ(T) ≥ 0 a.s. and
 P(V^θ(T) > 0) > 0.
- An admissible portfolio θ(t) is an arbitrage for{X(t)}_{t∈[0,T]} if and only if it is an arbitrage for {X(t)}_{t∈[0,T]}.
- Arbitrage is a sign of lack of equelibrium in the market.
- In financial markets arbitrage dont survive long time: supply and demand eliminate it.
- Arbitrage can be used to determine the fair price of financial assets.

Equivalent martingale Measure and arbitrage freeness

If there is a probability measure Q on (Ω, \mathbb{F}) such that $P \sim Q$ and that normalized price process $\{\overline{X}_t\}_{t \in [0,T]}$ is a (local)martingale with respect to Q then $\{X_t\}_{t \in [0,T]}$ admits no arbitrage.

Proof:

- Let $\theta(t)$ be an arbitrage for $\{\overline{X}_t\}_{t \in [0,T]}$.
- $\overline{V}^{\theta}(t)$ is a lower (local)martingale and thus a supermartingale with respect to Q.
- $\blacktriangleright \mathbb{E}_Q[V^{\theta}(T)] \leq V^{\theta}(0) = 0.$
- ► $V^{\theta}(T, \omega) \ge 0$ Qa.s. and $Q(V^{\theta}(T) > 0) > 0$ since $P \sim Q$ which Implies that $\mathbb{E}_Q[V^{\theta}(T)] > 0$.

Equivalent martingale measure and arbitrage freeness

- In discret time setting the arbitrage freeness insures the existence of an equivalent martingale measure.
- in the continuous time setting we have to settle with the following

Theorem

Let $\hat{X}(t) = \{X_1(t), \dots, X_n(t)\}$. The market $\{X_t\}_{t \in [0,T]}$ admits no arbitrage if and only if there exists a process $u(t, \omega) \in \mathcal{V}^m(0, T)$ satisfying

- $\mathbb{E}[exp(\frac{1}{2}\int_0^T \|u(t,\omega)\|^2 dt)] < \infty$ (Novikov's condition)
- $\sigma(t,\omega)u(t,\omega) = \rho(t,\omega)\hat{X}(t,\omega) \mu(t,\omega)$ for a.a. (t,ω) in $[0,T] \times \Omega$.
- Before proving the theorem we need to discuss the Girsanov theorem.

The Girsanov theorem

Theorem Let $u(t, \omega) \in \mathcal{V}^m(0, T)$ satisfy the Novikov's condition and $\xi(t) := \exp(\int_0^t u(s, \omega) dB(t) - \frac{1}{2} \int_0^t ||u(s, \omega)||^2 ds)$. The process $\tilde{B}(t) := B(t) - \int_0^t u(s, \omega) ds$ is then an \mathcal{F}_t^m -adapted m-dimensional Brownian motion under a new probability measure $\tilde{P} \sim P$ on (Ω, \mathcal{F}) such that $\tilde{P}(A) = \mathbb{E}^P[\mathbf{1}_A, \xi(T)]$ for all $A \in \mathcal{F}$.

Discussion of the Girsanov theorem

- The theorem states that $d\tilde{B}(t)$ is obtained by subtracting a drift term from dB(t).
- Both {B(t)}_{t∈[0,T]} and {B̃(t)}_{t∈[0,T]} are Brownian motions and thus do not have any drift.
- If dB(t) models the random infinitesimal increments of a given dynamical system then dB̃(t) can represent the unpredictable infinitesimal errors if we switch from P to P̃.

Arbitrage freeness : The proof

"⇒"

- Assume that X(t) is normalized, i.e. that $\rho = 0$
- Define \tilde{P} on \mathcal{F} as in the Girsanov Theorem.
- $\tilde{B}(t) = B(t) \int_0^t u(s, \omega) ds$ is a \tilde{P} -Brownian motion and $\tilde{P} \sim P$.
- $dX(t) = \sigma d\tilde{B}(t)$ and X(t) is a (local) \tilde{P} -Martingale.
- There is an equivalent martingale measure which means that the market is arbitrage free.

Arbitrage freeness : the proof

"⇐"

- Let $A_t = \{\omega : \sigma(t, \omega) u(t, \omega) = -\mu(t, \omega) \text{ has no solutions} \}.$
- ► $A_t = \{\omega : \exists a(t, \omega) \text{ with } \sigma^T(t, \omega) a(t, \omega) = 0 \text{ and } a(t, \omega) \cdot \mu(t, \omega) \neq 0 \}.$
- ▶ Define $\theta_i(t, \omega) = \text{sign}(a(t, \omega) \cdot \mu(t, \omega))a_i(t, \omega)$ for $\omega \in A_t$ and 0 else for i = 1, ..., n.
- choose θ₀(t, ω) in such a way that makes θ(t) self-financing.
- ► $V^{\theta}(t,\omega) \ge V^{\theta}(0)$ for $\forall t \in [0, T]$. Hence $\mathbf{1}_{A_t} = 0$ for a.a. $(t,\omega) \in \Omega \times [0, T]$.

References

- Bernt Øksendal. Stochastic Differential Equations An Introduction with Applications, Fifth Edition, Springer-Verlag Heidelberg New York.
- Darrell Duffie. Dynamic Asset Pricing Theory, Third Edition, Princeton University Press.
- Salih Neftci. An Introduction to the Mathematics of Financial Derivatives, Academic Press.