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1 Definitions

Before we give the formal construction of Archimedean copulas, we want to motivate the definition
of this class of copulas. By elementary probability theory we know that two continuous random
variables X and Y , with joint distribution function H and margins F and G are independent if and
only if H(x, y) = F (x)G(y) for all x, y ∈ R. Now there are families of copulas that satisfy a property
that looks similar. Remember the Ali-Mikhail-Haq family of copulas given by

Cθ(u, v) =
uv

1− θ(1− u)(1− v)

for θ ∈ [−1, 1]. This family was constructed in a way that

1− Cθ(u, v)

Cθ(u, v)
=

1− u
u

+
1− v
v

+ (1− θ)1− u
u
· 1− v

v

holds. So defining λ(t) = 1 + (1− θ)(1− t)/t, this can be written as

λ(Cθ(u, v)) = λ(u)λ(v).

Going one step further, if we define ϕ(t) = − log(λ(t)), we get

ϕ(Cθ(u, v)) = ϕ(u) + ϕ(v).

Maybe there are more copulas satisfying

ϕ(C(u, v)) = ϕ(u) + ϕ(v),

for a function ϕ. If we define an appropriate inverse ϕ[−1] we can solve this expression for C, so we
have a copula fulfilling

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)). (1.1)

This leads us to the following definition. Why we expect ϕ to have these specific properties as stated
below, becomes clear later.

Definition 1.1 Let ϕ : I → [0,∞] be continuous, strictly decreasing and such that ϕ(1) = 0. The
pseudo-inverse ϕ[−1] : [0,∞]→ I is defined as

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0)

0, ϕ(0) ≤ t ≤ ∞
.

Let us first note some useful properties of the pseudo-inverse.

Lemma 1.2 (Properties of pseudo-inverse) Let ϕ[−1] be defined as above. Then

(i) ϕ[−1] is continuous, non-increasing on [0,∞] and strictly decreasing on [0, ϕ(0)].

(ii) ∀t ∈ I : ϕ[−1](ϕ(t)) = t

(iii) ∀t ∈ [0,∞] : ϕ(ϕ[−1](t)) = min(t, ϕ(0))
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(iv) ϕ(0) =∞⇒ ϕ[−1] = ϕ−1

Proof. (i) These properties are an immediate consequence of the definition of ϕ[−1] and properties
of an inverse function.

(ii) Let t ∈ I since ϕ is strictly decreasing ϕ(t) ≤ ϕ(0). Therefore per definition of ϕ[−1] it holds

ϕ[−1](ϕ(t)) = t.

(iii) Let t ≥ 0. If t ≤ ϕ(0), we have

ϕ(ϕ[−1](t)) = ϕ(ϕ−1(t)) = t.

If t > ϕ(0), we get

ϕ(ϕ[−1](t)) = ϕ(0).

The claim follows.

(iv) Follows directly from the definition of ϕ[−1].

�

In order to show that a function C defined by (1.1) is indeed a copula, we will need the two following
Lemmata.

Lemma 1.3 Let ϕ : I→ [0,∞] continuous, strictly decreasing such that ϕ(1) = 0, and let ϕ[−1] be
the pseudo-inverse. Let C : I2 → I defined by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v))

Then C satisfies the boundary conditions for a copula that is for every u, v ∈ I

C(u, 0) = C(0, v) = 0

and
C(u, 1) = u, C(1, v) = v.

Proof. Let u ∈ I. By definition of ϕ[−1] it follows that

C(u, 0) = ϕ[−1](ϕ(u) + ϕ(0)︸ ︷︷ ︸
≥ϕ(0)

) = 0

and
C(u, 1) = ϕ[−1](ϕ(u) + ϕ(1)) = ϕ[−1](ϕ(u)) = u

Since C is obviously symmetric, the proof for the other component remains the same. �

Lemma 1.4 Let ϕ : I→ [0,∞] continuous, strictly decreasing such that ϕ(1) = 0, and let ϕ[−1] be
the pseudo-inverse. Let C : I2 → I defined by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)).

Then C is 2-increasing if and only if for all v ∈ I:

u1 ≤ u2 ⇒ C(u2, v)− C(u1, v) ≤ u2 − u1.
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Proof. ”⇒” Let u1, u2, v ∈ I with u1 ≤ u2. Now using Lemma 1.3

C(u2, v)− C(u1, v) ≤ u2 − u1

is equivalent to
C(u2, 1)− C(u1, 1)− C(u2, v) + C(u1, v) ≥ 0.

So we have VC([u1, u2]× [v, 1]) ≥ 0, which is true if C is 2-increasing.

”⇐” Now assume that for all v ∈ I:

u1 ≤ u2 ⇒ C(u2, v)− C(u1, v) ≤ u2 − u1.

Let u1, u2, v1, v2 ∈ I with v1 ≤ v2 and u1 ≤ u2. By Lemma 1.2.

C(0, v2) = 0 ≤ v1 ≤ v2 = C(1, v2).

So by using the intermediate value theorem on the continuous function s 7→ C(s, v2), s ∈ I, there
exists a t in I with C(t, v2) = v1, or equivalently ϕ(t) + ϕ(v2) = ϕ(v1). Using this property we get

C(u2, v1)− C(u1, v1) = ϕ[−1](ϕ(u2) + ϕ(v2) + ϕ(t))−
ϕ[−1](ϕ(u1) + ϕ(v2) + ϕ(t))

= C(C(u2, v2), t)− C(C(u1, v2), t)

≤ C(u2, v2)− C(u1, v2).

Where we have used our assumption in the last inequality, since C(u1, v2) ≤ C(u2, v2). Now

C(u2, v1)− C(u1, v1) ≤ C(u2, v2)− C(u1, v2)

is equivalent to VC([u1, u2]× [v1, v2]) ≥ 0. This completes the proof. �

The following Theorem is an important result of this chapter, since it gives a necessary and sufficient
condition under which circumstances C defined by (1.1) is a copula. For the proof we will need
Lemma 1.3 and Lemma 1.4.

Theorem 1.5 Let ϕ : I→ [0,∞] be continuous, strictly decreasing and such that ϕ(1) = 0, and let
ϕ[−1] be the pseudo-inverse. Let C : I2 → I defined as before. Then C is a copula if and only if ϕ is
convex.

Proof. By the preceding Lemmata it is enough to show that

∀v ∈ I : (u1 ≤ u2 ⇒ C(u2, v)− C(u1, v) ≤ u2 − u1)⇔ ϕ convex.

Now since ϕ is strictly decreasing, ϕ is convex if and only if ϕ[−1] is convex. We will therefore show

∀v ∈ I : (u1 ≤ u2 ⇒ C(u2, v)− C(u1, v) ≤ u2 − u1)⇔ ϕ[−1] convex.

The statement on the left can be written as

u1 + ϕ[−1](ϕ(u2) + ϕ(v)) ≤ u2 + ϕ[−1](ϕ(u1) + ϕ(v))

if u1 ≤ u2. Now defining a := ϕ(u1),b := ϕ(u2) and c := ϕ(v) this can be seen as

ϕ[−1](a) + ϕ[−1](b+ c) ≤ ϕ[−1](b) + ϕ[−1](a+ c). (1.2)
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”⇒” Now assume that (1.2) holds. For s, t ∈ [0,∞] with s < t set a = (s+ t)/2, b = s, c = (t− s)/2.
So (1.2) yields

ϕ[−1]
(
s+ t

2

)
+ ϕ[−1]

(
t+ s

2

)
≤ ϕ[−1](s) + ϕ[−1](t),

which is equivalent to

ϕ[−1]
(
s+ t

2

)
≤ ϕ[−1](s) + ϕ[−1](t)

2
.

Therefore ϕ[−1] is midpoint-convex and since ϕ[−1] is Lebesgue measurable as a continuous function,
it follows that ϕ[−1] is convex.

”⇐” Let ϕ[−1] be a convex function. Furthermore, let a, b, c ∈ I, with a ≥ b and c ≥ 0. Define
γ := (a− b)/(a− b + c) ∈ [0, 1]. Note that a = (1− γ)b + γ(a + c) and b + c = γb + (1− γ)(a + c).
Now using the convexity of ϕ[−1] we get

ϕ[−1](a) ≤ (1− γ)ϕ[−1](b) + γϕ[−1](a+ c)

and
ϕ[−1](b+ c) ≤ γϕ[−1](b) + (1− γ)ϕ[−1](a+ c).

Adding these inequalities yields

ϕ[−1](a) + ϕ[−1](b+ c) ≤ ϕ[−1](b) + ϕ[−1](a+ c)

and this is exactly (1.2). The claim follows. �

Now we are finally ready to define Archimedean copulas as follows.

Definition 1.6 Let ϕ : I→ [0,∞] be continuous, strictly decreasing, convex and such that ϕ(1) = 0,
and let ϕ[−1] be the pseudo-inverse. Let C : I2 → I defined by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)).

By Theorem 1.5 C is a copula, called an Archimedean copula. ϕ is called a generator of C. If
ϕ(0) =∞, we say ϕ is a strict generator and C is a strict Archimedean copula.

In the following example we will proof that two well-known copulas we have already discussed are
Archimedean copulas. We will refer to this example quite a lot throughout this paper.

Example 1.7 (a) Let ϕ(t) = − log(t), t ∈ [0, 1]. Since ϕ(0) =∞, by Lemma 1.2 (iv) it follows that
ϕ[−1](t) = ϕ−1(t) = exp(−t). So

C(u, v) = exp(−[(− log u) + (− log v)]) = exp(log(uv)) = uv = Π(u, v).

(b) Let ϕ(t) = 1− t, t ∈ [0, 1]. In this case it holds

ϕ[−1](t) =

{
1− t, 0 ≤ t ≤ 1

0, 1 ≤ t ≤ ∞
.

Therefore

C(u, v) = ϕ[−1](2− u− v) =

{
u+ v − 1, 0 ≤ 2− u− v ≤ 1

0, 1 ≤ 2− u− v
= max(u+ v − 1, 0).

So we see C = W , where W is the lower Frechet-Hoeffding bound for copulas.
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2 One-parameter families

The great benefits of the class of Archimedean copulas were already hinted at in the last chapter. First
note that it is really easy to construct Archimedean copulas. By Theorem 1.5 we only have to find a
suitable generator function ϕ to construct such a copula. In addition to that the class of Archimedean
copulas consists of a wide variety of different families and has therefore a lot of applications, for
example in statistics. We will give two example one-parameter families of Archimedean copulas here.

Example 2.1 First we will take a look at the Gumbel-Hougaard family given by

Cθ(u, v) = exp(−[(− log u)θ] + (− log(v)θ)]1/θ)

for θ ∈ [1,∞). The family of generators is given by

ϕθ(t) = (− log t)θ.

Special cases in this family are C1 = Π and C∞ = M , where M(u, v) = min(u, v), (u, v) ∈ I2.

Example 2.2 The second example of an Archimedean family is given by

Cθ(u, v) = max(θuv + (1− θ)(u+ v − 1), 0)

for θ ∈ (0, 1]. The family of generators is given by

ϕθ(t) = − log(θt+ (1− θ)).

Special cases in this family are C0 = W and C1 = Π. In Figure 2.1 we can see a scatterplot of 500
samples of this family for different values of θ. Interesting is that we can already see as we get closer
to 1 with θ, how our plot more and more resembles Π.

Figure 2.1: Scatterplots, θ = 0.4 (left) and θ = 0.9 (right)

Note that the special cases in these families are taken for values that are not necessarily in the
parameter interval, for example C0 in Example 2.2. We conclude that some limit has to be calculated
there. How one can calculate these limiting cases of Archimedean copulas is discussed in the fourth
chapter.
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3 Fundamental properties

For simplicity let Ω denote the set of continuous strictly decreasing convex functions ϕ : I→ [0,∞]
with ϕ(1) = 0. So Ω is the set of generator functions for Archimedean copulas. The next theorem and
the following corollaries are used in chapter 4 to prove a theorem about limiting cases of Archimedean
copulas.

Theorem 3.1 Let C be an Archimedean copula generated by ϕ ∈ Ω. Let KC(t) denote the C-
measure of the set

{(u, v) ∈ I2|C(u, v) ≤ t} = {(u, v) ∈ I2|ϕ(u) + ϕ(v) ≥ ϕ(t)}.

Then for any t in I

KC(t) = t− ϕ(t)

ϕ′(t+)
,

where ϕ′(t+) denotes the right-sided derivative of ϕ at t.

Proof. First note that ϕ′(t+) exists, since ϕ is convex. Let t be in (0, 1), and set w = ϕ(t). Let
n ∈ N. Let W := {0, w

n
, . . . , wn

n
} be a partition of [0, w] and T := {t = t0, . . . , tn = 1} be a partition

of [t, 1] with

tn−k = ϕ[−1](
kw

n
), k = 0, 1, . . . , n.

It follows that

C(tj, tk) = ϕ[−1](ϕ(tj) + ϕ(tk)) = ϕ[−1](w +
n− j − k

n
w),

especially C(tj, tn−j) = t.
Denote [tk−1, tk]× [0, tn−k+1] by Rk, and let Sn = ∪nk=1Rk.

Note that by using the convexity of ϕ[−1]

0 ≤ t1 − t0 ≤ . . . ≤ tn − tn−1

and limn→∞ tn − tn−1 = limn→∞ 1 − ϕ[−1] (w
n

)
= 0. So the mesh of our partition converges to 0 as

n→∞. Therefore we have, by the construction of the C-measure, KC(t) is the sum of the C-measure
of [0, t]× I and limn→∞ VC(Sn).
Now we calculate for each k

VC(Rk) = C(tk, tn−k+1)− C(tk, 0)− C(tk−1, tn−k+1) + C(tk−1, 0)

= C(tk, tn−k+1)− t

= ϕ[−1](w − w

n
)− ϕ[−1](w)

and since Rk and Rl are disjoint for k 6= l (apart from a set with C-measure 0)

VC(Sn) =
n∑
k=1

VC(Rk) = nVC(R1) = −w
[
ϕ[−1](w)− ϕ[−1](w − w/n)

w/n

]
.

So using the rule for the derivative of an inverse function

lim
n→∞

VC(Sn) = − w

(ϕ[−1])′(w−)
= − w

ϕ′(t+)
.
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Finally

KC(t) = VC([0, t]× I) + lim
n→∞

VC(Sn) = t− ϕ(t)

ϕ′(t+)
.

�

Corollary 3.2 Let C be an Archimedean copula generated by ϕ ∈ Ω. Let K ′C(s, t) denote the
C-measure of the set

{(u, v) ∈ I2|u ≤ s, C(u, v) ≤ t}

Then for any (s, t) ∈ I2

K ′C(s, t) =

{
s, s ≤ t

t− ϕ(t)−ϕ(s)
ϕ′(t+)

s > t

The next corollary gives a probabilistic interpretation of the results we proved in Theorem 3.1 and
Corollary 3.2.

Corollary 3.3 Let U and V be uniform (0,1) random variables with joint distribution function C
generated by ϕ ∈ Ω. Then the function KC is the distribution function of C(U, V ). Furthermore,
the function K ′C is the joint distribution function of U and C(U, V ).

Proof. Note that the C-Measure of a set A ⊂ I2 is the probability that two uniform (0, 1) random
variables, with joint distribution function C are inside this set. So by the choice of (U, V ) and the
definition of KC(t):

KC(t) = P ((U, V ) ∈ {(u, v) ∈ I2|C(u, v) ≤ t}) = P (C(U, V ) ≤ t),

which shows that KC is the distribution function of C(U, V ). For K ′C the claim follows similarly. �
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4 Order and limiting cases

In this chapter we will portrait some nice properties, members of the class of Archimedean copulas
possess. We will start with the order.

Definition 4.1 Let C1 and C2 be copulas, we say C1 is smaller than C2 (or C2 is larger than C1),
and write C1 ≺ C2 (or C2 � C1) if C1(u, v) ≤ C2(u, v) for all u, v in I.

We say a family {Cθ} of copulas is positively ordered if

α ≤ β ⇒ Cα ≺ Cβ.

The family is negatively ordered if
α ≤ β ⇒ Cα � Cβ.

Example 4.2 Consider this one-parameter family of Archimedean copulas

Cθ(u, v) = θ/ log(eθ/u + eθ/v − eθ),

generated by
ϕθ(t) = eθ/t − eθ

for θ ∈ (0,∞).
Now let θ1, θ2 ∈ (0,∞), θ1 ≤ θ2. Is there a relation between

θ1
log(eθ1/u + eθ1/v − eθ1)

and
θ2

log(eθ2/u + eθ2/v − eθ2)
?

As this example illustrates, using the definition to check wether a family of copulas has an order,
can be quite difficult. For Archimedean copulas we are in a better situation and can use a different
criteria to determine if a family is ordered. For that we will need the definition of subadditivity.

Definition 4.3 A function f : [0,∞)→ R is subadditive if for all x, y ∈ [0,∞)

f(x+ y) ≤ f(x) + f(y).

Theorem 4.4 Let C1 and C2 be Archimedean copulas generated by ϕ1 and ϕ2 in Ω. Then C1 ≺ C2

if and only if ϕ1 ◦ ϕ[−1]
2 is subadditive.

Proof. Let f = ϕ1 ◦ϕ[−1]
2 . f is continuous, nondecreasing, and f(0) = 0. Per definitionem, C1 ≺ C2

if and only if for all u, v in I,

ϕ
[−1]
1 (ϕ1(u) + ϕ1(v)) ≤ ϕ

[−1]
2 (ϕ2(u) + ϕ2(v)).

Let x = ϕ2(u) and y = ϕ2(v), then the above is equivalent to

ϕ
[−1]
1 (f(x) + f(y)) ≤ ϕ

[−1]
2 (x+ y) (4.1)

for all x, y in [0, ϕ2(0)]. In addition if x > ϕ2(0) or y > ϕ2(0), then (4.1) reduces to 0 ≤ 0. This can
be seen as follows. Let for example x > ϕ2(0), the same reasoning applies if y > ϕ2(0).
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By definition of the pseudo-inverse

ϕ
[−1]
2 (x+ y) = 0.

Additionally since ϕ
[−1]
2 (x) = 0, we get that f(x) = ϕ1(0) and therefore

ϕ
[−1]
1 (f(x) + f(y)) = ϕ

[−1]
1 (ϕ1(0) + f(y)︸ ︷︷ ︸

≥ϕ1(0)

) = 0.

”⇒” Now let C1 ≺ C2. So we know (4.1) holds for x, y ∈ [0,∞). Applying ϕ1 to both sides yields

ϕ1(ϕ
[−1]
1 (f(x) + f(y))) ≥ ϕ1(ϕ

[−1]
2 (x+ y)).

Now since ϕ(ϕ[−1])(t) ≤ t, for t ∈ [0,∞],

f(x+ y) ≤ f(x) + f(y),

so f is subadditive.
”⇐” Conversely let f be subadditive we can apply ϕ

[−1]
1 to

f(x+ y) ≤ f(x) + f(y)

and we get
ϕ
[−1]
1 (f(x+ y)) ≥ ϕ

[−1]
1 (f(x) + f(y)).

By definition of f
ϕ
[−1]
1 (f(x) + f(y)) ≤ ϕ

[−1]
2 (x+ y)

and this is the claim. �

In the next theorem we will see under which circumstances the limit of a family of Archimedean
copulas is an Archimedean copula. This theorem was used to calculate the limiting cases in Examples
2.1 and 2.2.

Theorem 4.5 Let {Cθ|θ ∈ Θ} be a family of Archimedean copulas with differentiable generators
ϕθ in Ω. Then C = limCθ (the limit is understood as a pointwise limit) is an Archimedean copula
if and only if there exists a function ϕ in Ω such that for all s, t in (0, 1):

lim
ϕθ(s)

ϕ′θ(t)
=
ϕ(s)

ϕ′(t)
,

where lim denotes the appropriate one-sided limit as θ approaches an end point of the parameter
interval. The generator of C is ϕ.

Proof. Let (Uθ, Vθ) be uniform (0,1) random variables with joint distribution function Cθ, let Kθ

denote the distribution function of Cθ(Uθ, Vθ) and let K ′θ denote the joint distribution function of Uθ
and Cθ(Uθ, Vθ). By Corollaries 3.2. and 3.3. we get

K ′θ(s, t) = t− ϕθ(t)

ϕ′θ(t)
+
ϕθ(s)

ϕ′θ(t)

for 0 < t < s < 1 and

Kθ(t) = t− ϕθ(t)

ϕ′θ(t)
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for all t in I. Now let (U, V ) be uniform (0,1) random variables with joint distribution function C,
let K be the distribution function of C(U, V ) and let K ′ denote the joint distribution function of U
and C(U, V ).

Assume C = limCθ is Archimedean with generator ϕ. So

lim t− ϕθ(t)

ϕ′θ(t)
= limKθ(t) = K(t) = t− ϕ(t)

ϕ′(t)
(4.2)

for t ∈ I. Note that the equality limKθ(t) = K(t) is a consequence of the definition of the C-volume
and construction of the C-measure. This proves the claim for s = t.
For 0 < t < s < 1. It now holds similarly that

lim t− ϕθ(t)

ϕ′θ(t)
+
ϕθ(s)

ϕ′θ(t)
= limK ′θ(s, t) = K ′(s, t) = t− ϕ(t)

ϕ′(t)
+
ϕ(s)

ϕ′(t)

and with (4.2) we get

lim
ϕθ(s)

ϕ′θ(t)
=
ϕ(s)

ϕ′(t)
.

Conversely assume that for all s, t in (0, 1):

lim
ϕθ(s)

ϕ′θ(t)
=
ϕ(s)

ϕ′(t)
.

If we denote cθ := ϕ′(t0)
ϕ′
θ(t0)

> 0 for a fixed t0 ∈ (0, 1), we get that for all s ∈ (0, 1], lim cθϕθ(s) = ϕ(s).

Claim: limϕ
[−1]
θ

(
·
cθ

)
= ϕ[−1](·).

For that let ε > 0, and s ∈ (0, ϕ(0)). Since ϕ[−1] is continuous, there exists δ > 0, such that

max{|ϕ[−1](s+ δ)− ϕ[−1](s)|, |ϕ[−1](s− δ)− ϕ[−1](s)|} < ε,

and s+ δ, s− δ ∈ (0, ϕ(0)).
Now since cθϕθ → ϕ pointwise, if θ is chosen close enough to an endpoint of the parameter interval
it holds

max{|cθϕθ(ϕ[−1](s+ δ))− ϕ(ϕ[−1](s+ δ))|, |cθϕθ(ϕ[−1](s− δ))− ϕ(ϕ[−1](s− δ))|}
= max{|cθϕθ(ϕ[−1](s+ δ))− (s+ δ)|, |cθϕθ(ϕ[−1](s− δ))− (s− δ)|} < δ.

So it has to hold

cθϕθ(ϕ
[−1](s− δ)) < s < cθϕθ(ϕ

[−1](s+ δ)).

If we apply ϕ
[−1]
θ (·/cθ) to the above and note that ϕ

[−1]
θ (·/cθ) is strictly decreasing (cθ is positive), we

end up with

ϕ[−1](s+ δ) < ϕ
[−1]
θ

(
s

cθ

)
< ϕ[−1](s− δ).

But by the choice of δ, we get now that ϕ[−1](s+ δ),ϕ[−1](s− δ) ∈ [ϕ[−1](s)− ε, ϕ[−1](s) + ε]. So

|ϕ[−1](s)− ϕ[−1]
θ

(
s

cθ

)
| < ε
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and this is our claim. For s = 0 the claim also holds as a direct consequence of the definition of a
generator. For s = ϕ(0), we can use a similar argument using the continuity of ϕ and the definition
of the pseudo-inverse.

We will show C = limCθ is Archimedean with generator ϕ. For that using the claim, the continuity
of ϕ[−1] and lim cθϕθ = ϕ, we have

lim
θ

lim
θ1
ϕ
[−1]
θ [

cθ1
cθ

(ϕθ1(u) + ϕθ1(v))] = lim
θ
ϕ
[−1]
θ

[
ϕ(u) + ϕ(v)

cθ

]
= ϕ[−1][ϕ(u) + ϕ(v)],

as well as

lim
θ1

lim
θ
ϕ
[−1]
θ [

cθ1
cθ

(ϕθ1(u) + ϕθ1(v))] = lim
θ1
ϕ[−1][cθ1(ϕθ1(u) + ϕθ1(v))] = ϕ[−1][ϕ(u) + ϕ(v)].

We can therefore set θ = θ1, hence

lim
θ
ϕ
[−1]
θ [ϕθ(u) + ϕθ(v)] = lim

θ
lim
θ1
ϕ
[−1]
θ [

cθ1
cθ

(ϕθ1(u) + ϕθ1(v))] = ϕ[−1][ϕ(u) + ϕ(v)]

for fixed u, v ∈ I and this completes the proof. �

We can now calculate the two limiting cases in Example 2.2.

Example 4.6 • Let ϕθ(t) = − log(θt+ (1− θ)), θ ∈ (0, 1]. Using L’Hospital:

lim
θ→0+

ϕθ(s)

ϕ′θ(t)
= lim

θ→0+

log(θs+ (1− θ))
θ/(θt+ (1− θ))

= s− 1.

Now define ϕ(s) = 1− s, s ∈ I. So it is easy to see that

lim
θ→0+

ϕθ(s)

ϕ′θ(t)
=
ϕ(s)

ϕ′(t)
.

By Theorem 4.5 it follows that C0 is Archimedean with generator ϕ, so using Example 1.7 (b)
we see that C0 = W .

• Using the same family of generators, we have

lim
θ→1−

ϕθ(s)

ϕ′θ(t)
= lim

θ→1−

log(θs+ (1− θ))
θ/(θt+ (1− θ))

= t log s.

Now define ϕ(s) = − log(s), s ∈ I. So by the above

lim
θ→1−

ϕθ(s)

ϕ′θ(t)
=
ϕ(s)

ϕ′(t)
.

Again we see that C1 is Archimedean with generator ϕ, so using Example 1.7 (a) we see that
C1 = Π.
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5 Two-parameter families

In this chapter we will give one way of constructing two-parameter families. The main idea is to
compose generators with the power function t 7→ tθ, θ > 0. One benefit of this approach is that we
can easily construct a two-parameter family of Archimedean copulas, by only knowing one generator.

Theorem 5.1 Let ϕ ∈ Ω, let α, β > 0 and define

ϕα,1(t) = ϕ(tα) ϕ1,β(t) = [ϕ(t)]β.

If β ≥ 1, then ϕ1,β ∈ Ω. If α is in (0, 1], then ϕα,1 ∈ Ω.
If ϕ is twice differentiable and tϕ′(t) is nondecreasing on (0, 1), then ϕα,1 is an element of Ω for all
α > 0.

Proof. We only show that for β ≥ 1 it holds that ϕ1,β ∈ Ω. The rest of the claims follow similarly.
So let β ≥ 1. ϕ1,β is continuous, since the power function and ϕ are continuous. To show the
convexity of ϕ1,β, first note that the function h : [0,∞] → R, h(x) = xβ is convex. We can see that
by calculating h′(x) = βxβ−1 ≥ 0, so h is convex. Now let t1, t2 ∈ I and λ ∈ [0, 1]. We get

(ϕ(λt1 + (1− λ)t2))
β ≤ (λϕ(t1) + (1− λ)ϕ(t2))

β ≤ λϕ(t1)
β + (1− λ)ϕ(t2)

β,

where we used that h is nondecreasing, and ϕ is convex in the first inequality and the convexity of
h in the second one. We show now that ϕ1,β is striclty decreasing. Let t1, t2 ∈ I, t1 < t2, so

ϕ(t1)
β > ϕ(t2)

β.

We used that ϕ is strictly decreasing and h is strictly increasing. Finally

ϕ1,β(1) = ϕ(1)β = 0β = 0,

which completes the proof. �

To construct a two-parameter family of copulas we can now define

ϕα,β(t) = [ϕ(tα)]β

and note that ϕα,β ∈ Ω if we choose α and β as in Theorem 5.1.

Example 5.2 Let ϕ(t) = 1− t and using our approach we define ϕα,β(t) = (1− tα)β for α ∈ (0, 1],
β ≥ 1. This generates

Cα,β(u, v) = max
([

1− ((1− uα)β + (1− vα)β)1/β
]1/α

, 0
)
.

Special cases in this family are for example C1,1 = W , C0,1 = Π and Cα,∞ = M .
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