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PART 1: Survival Copula.
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Definition

» The probability of an individual living X or "surviving” beyond
time x, which is called the survival function

I:'(x) =P[X > x] =1 — F(x).

» For a pair (X, Y) of random variables with joint distribution
function H, the joint survival function

A(x,y) =P[X > x,Y > y]
=1— F(x) — G(y) + H(x,y)
= F(x) + G(y) — 1+ H(x,y)
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Survival Copula

» Assume that Cxy is the copula of two random variables X and
Y. From Sklar's Theorem, one has

H(x,y) = C(F(x), G(y))
» Rewrite the survival joint distribution function
A(x,y) = F(x) + G(y) = 1+ C(1 = F(x),1 - G(y))
> If we define a function € : 12 — T given by

Clu,v)=u+v—-14+C1—-ul1—-v),

we have

A(x,y) = C(F(x), G(y)).
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PaY

C is a copula

» We check the following conditions
e DomC =12,
e For any rectangle K = [x1,x2] X [y1, 2] lying in I? then
K'=[1-=x,1—x1] X [1—y2,1— y1] also is a rectangle
within I? and

Va(K) = C(xa, y2) + C(x1, 1) — C(xa, y2) — C(x0011)
=C(l—x,1—y)—C(1—x2,1—y1)
—C(1—x1,1 =)+ C(1 —x1,1—y1)

e C(u,0)=0= C(0,v) for any (u,v) € I2.
o C(u,1)=wuand C(1,v) = v for any (u,v) € I°.
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Example

» We have the following relation

A(x,y) = C(F(x), G(y))-

and
Clu,v)=u+v—-14+C(1—u,1-v),

» One can find the survival copula of X and Y if
@ The copula Cxy is known.

@ Using Sklar’'s Theorem when the survival joint distribution
function is known.
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Example

» (Gumbel’s bivariate exponential distribution). Let Hy be the
joint distribution function of X and Y given by

C(1-—e X —e V4 eyt if x>0,y >0,
Hlxy) = { 0 otherwise

where 6 € [0,1]. Then the copula Cxy is
Co(u,v) = u+v—1+(1—u)(1—v)e ?n@-u)in@-v)

hence

N

C@(U, V) — uvefeln ulnv
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Example

> Let X and Y be random variables whose joint survival function
is given by

(1+x+y)? ifx>0y>0

- B (14 x)7° if x>0,y<0
HooY) =4 (14y)%  ifx<0,y>0
1 if x<0,y<O0.

and the marginal survival function F and G are

aov J@+x)? x>0 sy f(l+y)? y>0
F(X)_{ 1, x<o MO0 = 1, y<o0

From the Corollary of Sklar's theorem, one has

A

Clu,v) = (u V0 4 v1/0 _1)~*
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PART 2: Continuity and Singularity.
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Singular copula and Absolutely continuous copula

» For each copula C induces a probability measure on I? by the
following equation

VC([O7 u] X [0? V]) = C(U, V)'
» For any copula C, let
C(U7 V) - AC(uv V) + SC(“a V)

where

u pv 52
A = —— (s, t)dtd
clw) = [ [ s Cls.)aras

Sc(u,v) = C(u,v) — Ac(u, v)

and
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Singular copula and Absolutely continuous copula

> If C = Ac, then C is absolutely continuous and it has a joint
density function given by §2C(u, v)/Suév.

» If 62C(u,v)/Sudv = 0 almost everywhere in 12, then C is
singular.

» From the relation between copula and its components, one has

Ac(1,1) + Sc(1,1) = C(1,1) =1

» The Fréchet - Hoeffding upper bound M(u, v) is singular and
the product copula is absolutely continuous.
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PART 3: The Inversion Method.
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Sklar’'s Theorem

» Let H be a bivariate function with continuous margins F and
G. From Sklar's theorem,there exists a copula such that

C(u,v) = H(F}(u), 67H(v))

and
C(u,v) = H(barF~(u), barG™1(v))

where F1(t) = F71(1 - ¢t).
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Outline

Problem: Consider a system with two components whose life times
are X and Y respectively, compute the probabilities that one or
both components may fail.

> It is necessary to find the survival function

H(x,y) =P[X > x, Y > y]

» Assume that the "shock” of these components follow the
Poisson processes with certain parameters:

@ Component 1 fail: A\
e Component 2 fail: A

@ Both components fail: A1
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Problem Setting

> Let /1,75 and Zj, be the times of the shocks and they are
independent exponential random variables, then

X = min(Zl,le) and Y = min(Zz, 212)
» Forall x,y >0,

H(x,y) = P[Zy > X|P[Z> > y]P[Z12 > max(x, y)]
= exp{—A1x — Aoy — Araxy }

» The marginal distribution functions are

F(x) = exp{—(M\1+12)x} and G(y) = exp{—(Ma+A12)y}
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Survival copula

» Since max(x,y) = x + y — min(x, y), one has

H(x,y) = F(x)G(y) min(exp{A12x}, exp{A12y})
» Denote by

a=A2/(M +A12), B =A12/(A2+ A12)

and B )
u=F(x), v=G(y)
then
C(u,v) = uvmin(u™®, v=?) = min(u*~%v, w! =)
» Denote by

Cop(u,v) == C(u, v).
» Note that for any «, 8 € [0, 1],

Ca70 = H = Co}ﬁ and C171 =M
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Survival copula

» Recall the copula C, g

» For u® # v, the absolutely continuous component is
Aap(u,v) = Cyp(u,v) — aiﬁ[min(ua Vﬁ)](a+ﬁfa5)/(a5)
o T at B-ap ’

» The singular component is

min(uo‘,vﬁ) +
Sa,p(u, v) :/ 8 2dt
0
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Si

» Recall that

Hence,

Aa’ﬁ(l, 1) + Sa’g(l, 1) =1

af

1) =
Sayp(1,1) a+8—ap
> IfU,V ~ U[O, 1] with Cyy = Ca,ﬂ, then

U= V=



Figure: Marshall - Olkin copulas, («, 8) = (1/2,3/4),(1/3,1/4)



The Circular Uniform Distribution

> Let (X, Y) denote the coordinates of the uniformly chosen
point on the unit circle. In polar coordinate system, its coordinate
is (1,0), then

X =cos(f) and Y =sin(0)

(X,Y) € [0,1]?

» To find a copula Cxy, one needs to find its joint distribution
function H(x,y) for (x,y) € [0, 1]2.
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Joint Distribution function

» The joint distribution function

H(x,y) = Plcosf < x,sinf < y]

» Since (X, Y) is uniformly chosen on the circle, hence the
probability of this point belongs to an arc is proportional to the
length of the arc.
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Intuition about JDF

A A

arccosy

arccV 1 (xy)
xy)
Zrccosx

Y

arccosx

Figure: Joint distribution function
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Joint distribution function

3 _ arccosxtarccosy X +y*<1
1 arecosxtarccosy - 52 4 y2 5 1ix,y > 0
H(x,y) = 1—arecosx 524 25 1ix <0,y >0
] — arccosy x>4+y?>1y<0,x>0
0 x> 4+y?>1;x,y<0

» Its marginal distribution functions are

F(X) —1_ arccos x and G(y) —1_ arccos y

™ ™

» lts quasi functions are

F~Y(u) = cos(m(u — 1)) and G1(v) = cos(n(v — 1))
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The copula Cxy

» The inverse image of the circle x> + y' = 1 via transformations
x=FYu),y=G1(v)is

lu—1/2] +|v—1/2| = 1/2.

» From the marginal distribution functions and the support of the
copula Cxy, one has the formula of the copula

M(u, v), lu—v|>1/2
C(u,v) =< W(u,v), lu—v+1>1/2
utv g, otherwise

» Note that §2C/duév = 0 almost everywhere in 12, hence Cxy
is singular.
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The copula Cxy

-

Figure: The copula Cxy
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Example

» Now one has the copula Cxy, how to construct a bivariate
distribution function with other margins?

» Assume that our desired margin is standard Cauchy margin,
which means

1 arctanx 1 arctany
F(x):§+T and G(y):§+T

» The procedure to get a bivariate distribution function is

@ Find the quasi functions from the marginal distribution
functions

@ Find the image of the circle through these quasi functions

© Replace the formula of quasi function to the formula of the
copula
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PART 4: The Algebraic Method.
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Problem setting

» Let X and Y be continuous random variables with a joint
distribution function H(x, y).
» Considering the following quantity

Hix,y)[1 = F(x) = G(y) + H(x, y)]

? = TIF00) — HOu TG 0) — Hixoy)]
where
H(x,y) =P[X <x,Y <y]
1-F(x) = G(y) + H(x,y) =P[X > x,Y > y]
F(x) — H(x,y) =P[X > x,Y <y]
G(y) —H(x,y) =PX <x,Y >y]
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Question Which joint distribution function H that ¢ is a constant?

«4O0» «Fr « E» « E = oA

v




Constructing a copula

» From Sklar’s theorem, assume that Cxy is the copula of two
random variables X and Y/, then
C(u,v)[1—u—v+ C(u,v)]

[U - C(U, V)][V - C(U, V)]

0=

» For different values of 6, one can find different forms of Cy

QIfo=1,
Co(u,v) = uv

Q@ Ifo+#1,
40— 1)(u+ V)]
Colu,v) = 2(0— 1)
N VIL+ (0 —1)(u+v)]2—4uvh(0 — 1)

200 - 1)
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The signs

> In case of § # 1, one can find 2 different copulas with different
signs in this expression.

[+ -1)(u+v)]

Colu,v) 20— 1)
VIL+ (0 —1)(u+v)]2 - 4uvh(0 — 1)
B 2(0 — 1)
and
01 (utv)]
Colu,v) = 200 — 1)
VIL+ (0 —1)(u+v)]2 —4uvh(d — 1)
* 200 - 1)
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Margins

» One has
Co(u,0) = 200 1)2Lé]eji[i)+ (6 —1)u]
Co(u,1) = V0= 1)2Lé]eji[f)+ (6 —1)u]

» One can show that 62C(u, v)/6udv > 0 and

v 52
(u,v) / / (5u6v

hence Cy(u, v) is an absolutely continuous copula.
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If0 —0and 0 — 1

» When 6 =0, then
Go(u,v) = max(0,u+v —1)

» When 0 = 1, then
G(u,v) =uv

These copulas are the Fréchet - Hoeffding bounds for an arbitrary
copula.
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Estimate 0 from a data set

» Recall the definition of

H(x, y)[1 = F(x) = G(y) + H(x, y)]
[F(x) = He NG (y) — Hix, y)l

» Our goal is to choose the optimal point (xo, o) such that

H(x0, y0)[1 — F(x0) — G(y0) + H(x0, y0)]
[F(x0) — H(x0, ¥0)][G (o) — H(x0, y0)]

The above quantity can be compute with respect to (xp, yo) by
analyzing the frequencies of points belonging to quadrant from the

point (xo, ¥0) -

= constant
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Quadrant 2

Quadrant 1

o.10)

Quadrant 3

Quadrant 4

Figure: Quadrants
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Ali-Mikhail-Haq Distributions

» One is interested in the ratio P[X > x]/P[X < x], where X is a
random variable representing the lifetime of an object.

» Analogously, one is interested in the ratio (1 — H(x, y))/H(x,y)

Duc T. Nguyen



Two typical examples

> Let X, Y be two random variables with joint distribution
function
Hix,y)=(1+e > +e ) !
then
1= Hy) _1=F(x) |, 1-G()
H(x,y) F(x) Gy)

> Let X, Y be two independent random variables, then

1-H(xy) 1-F(x) 1= G(y)  1-F(x) 1-G(y)
H(x,y) F(x) G(y) F(x) G(y)
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Question

Question: Which bivariate function H(x,y) that satisfies the
following equation

1—H(x,y) 1—F(x) 1-G(y) 1-F(x) 1-G(y)

Ay) ~ Fo) ey T TER T e

where 0 € (0, 1).
» Denote Cy(u, v) by the copula of X and Y, then

1-C(u,v) 1—u 1-v l1—u 1-v
— 1-6 .
C(u,v) u + v + ) u v

then

Co(u,v) = 1-601—u)(1-v)

One can check Cy is a copula and it is absolutely continuous.
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Transformation Method

> Let (X1, Y1),(X2, Y2),- -+, (Xp, Yn) be IID random variables
with common joint distribution function H and marginal
distribution function F and G.

» Denote C(p,), Hny by the copula and joint distribution function

of X(n) and Y, where
X = max{Yi}, Yiny = max{Y;}
» Denote f(,) and G(,) by the margins of X(,) and Y(,). then

Fim() =[FC)I" and  Gy(y) = [G(¥)]”
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» If C is the copula of (X;, Y;),i=1,...,n, then
or

where (u,v) € 12.

Hiny (x,¥) = H(x, ¥) = € ([Fn) (0" 160y )"

C(n)(ua V) = Cn(ul/n, Vl/n)



Image of a copula through a concave function

Let v : [0,1] — [0, 1] be continuous and strictly increasing with
7(0) = 0,7(1)1 =1, and let y~! denote the inverse of ~. For an
arbitrary copula C any (u, v) € 12, define the function C, by

Cy(u,v) =7~ H(C(v(u),7(v))

Then C, is a copula if and only if v is concave(or vt

is convex ).

<
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Y

~1is convex = C, is a copula

» Since 7(0) = 0 =~71(0) and (1) = 1 = v~1(1), then for
(u,v) €12,

Cy(,0) = 77H(C(2(u),0)) = 0 =~"1(C(0,

Cy(u,1) =77 H(C(Y(u), 1)) =

G (L v) =7 HC(LA(v) =

» Let K = [ug, tp] X [v1, vo] be an arbitrary rectangle within in 12,
denote by

u

(v))) = G(0,v)

a= C("}/(ul),"}/(Vl)), b= C(V(u1)77(v2))7

c = C(v(u2),v(v1)), d = C(v(u2, v2),7())
then,

or



1

C, is a copula = 7 * is convex

For any a,d in [0,1] such that a < d, let
== @+1)/2),  m=w=rY(d+1)2)

Since C, is a copula, then the C, - measure of the rectangle
K = [u1, v1] X [u2, v2] is non-negative. Hence

yHa) =277 ((a + d)/2) +77H(d) > 0

1

which implies v~ is convex.
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