Methods of constructing copulas.
Inversion Method and Algebraic Method

Duc T. Nguyen

Ulm University
Advisor: Prof. Evgeny Spodarev

February 5, 2021
References

1. An introduction to copulas.

2. Elements of Copula Modeling with R-Springer.
Outline

- **First part:** Survival copula.

- **Second part:** Continuity and Singularity.

- **Third part:** Inversion Method.
 - The Circular Uniform Distribution.

- **Fourth part:** Survival copula.
 - Plackett Distributions.
PART 1: Survival Copula.
Definition

- The probability of an individual living \(X \) or "surviving" beyond time \(x \), which is called \textbf{the survival function}

\[
\bar{F}(x) = \mathbb{P}[X > x] = 1 - F(x).
\]

- For a pair \((X, Y)\) of random variables with joint distribution function \(H \), \textbf{the joint survival function}

\[
\bar{H}(x, y) = \mathbb{P}[X > x, Y > y]
\]
\[
= 1 - F(x) - G(y) + H(x, y)
\]
\[
= \bar{F}(x) + \bar{G}(y) - 1 + H(x, y)
\]
Assume that \(C_{XY} \) is the copula of two random variables \(X \) and \(Y \). From Sklar’s Theorem, one has

\[
H(x, y) = C(F(x), G(y))
\]

Rewrite the survival joint distribution function

\[
\tilde{H}(x, y) = \tilde{F}(x) + \tilde{G}(y) - 1 + C(1 - \tilde{F}(x), 1 - \tilde{G}(y))
\]

If we define a function \(\hat{C} : \mathbb{I}^2 \rightarrow \mathbb{I} \) given by

\[
\hat{C}(u, v) = u + v - 1 + C(1 - u, 1 - v),
\]

we have

\[
\tilde{H}(x, y) = \hat{C}(\tilde{F}(x), \tilde{G}(y)).
\]
\(\hat{C} \) is a copula

- We check the following conditions
 - \(\text{Dom} \hat{C} = \mathbb{I}^2 \).
 - For any rectangle \(K = [x_1, x_2] \times [y_1, y_2] \) lying in \(\mathbb{I}^2 \) then \(K' = [1 - x_2, 1 - x_1] \times [1 - y_2, 1 - y_1] \) also is a rectangle within \(\mathbb{I}^2 \) and
 \[
 V_{\hat{C}}(K) = \hat{C}(x_2, y_2) + \hat{C}(x_1, y_1) - \hat{C}(x_1, y_2) - \hat{C}(x_2, y_1) \\
 = C(1 - x_2, 1 - y_2) - C(1 - x_2, 1 - y_1) \\
 - C(1 - x_1, 1 - y_2) + C(1 - x_1, 1 - y_1)
 \]
 - \(C(u, 0) = 0 = C(0, v) \) for any \((u, v) \in \mathbb{I}^2 \).
 - \(C(u, 1) = u \) and \(C(1, v) = v \) for any \((u, v) \in \mathbb{I}^2 \).
We have the following relation

\[\bar{H}(x, y) = \hat{C}(\bar{F}(x), \bar{G}(y)). \]

and

\[\hat{C}(u, v) = u + v - 1 + C(1 - u, 1 - v), \]

One can find the survival copula of \(X\) and \(Y\) if

- The copula \(C_{XY}\) is known.
- Using Sklar’s Theorem when the survival joint distribution function is known.
Example

(Gumbel’s bivariate exponential distribution). Let H_θ be the joint distribution function of X and Y given by

$$H(x, y) = \begin{cases}
1 - e^{-x} - e^{-y} + e^{-(x+y+\theta xy)} & \text{if } x \geq 0, y \geq 0, \\
0 & \text{otherwise}
\end{cases}$$

where $\theta \in [0, 1]$. Then the copula C_{XY} is

$$C_\theta(u, v) = u + v - 1 + (1 - u)(1 - v)e^{-\theta \ln(1-u) \ln(1-v)}$$

hence

$$\hat{C}_\theta(u, v) = uv e^{-\theta \ln u \ln v}$$
Example

Let X and Y be random variables whose joint survival function is given by

$$
\tilde{H}_\theta(x, y) = \begin{cases}
(1 + x + y)^{-\theta} & \text{if } x \geq 0, y \geq 0 \\
(1 + x)^{-\theta} & \text{if } x \geq 0, y < 0 \\
(1 + y)^{-\theta} & \text{if } x < 0, y \geq 0 \\
1 & \text{if } x < 0, y < 0.
\end{cases}
$$

and the marginal survival function \hat{F} and \hat{G} are

$$
\hat{F}(x) = \begin{cases}
(1 + x)^{-\theta} & x \geq 0 \\
1, & x < 0
\end{cases} \quad \text{and} \quad \hat{G}(y) = \begin{cases}
(1 + y)^{-\theta} & y \geq 0 \\
1, & y < 0
\end{cases}
$$

From the Corollary of Sklar’s theorem, one has

$$
\hat{C}(u, v) = (u^{-1/\theta} + v^{-1/\theta} - 1)^{-\theta}
$$
PART 2: Continuity and Singularity.
Singular copula and Absolutely continuous copula

For each copula C induces a probability measure on \mathbb{R}^2 by the following equation

$$V_C([0, u] \times [0, v]) = C(u, v).$$

For any copula C, let

$$C(u, v) = A_C(u, v) + S_C(u, v)$$

where

$$A_C(u, v) = \int_0^u \int_0^v \frac{\delta^2}{\delta s \delta t} C(s, t)dt ds$$

and

$$S_C(u, v) = C(u, v) - A_C(u, v)$$
If \(C \equiv A_C \), then \(C \) is absolutely continuous and it has a joint density function given by \(\frac{\delta^2 C(u, v)}{\delta u \delta v} \).

If \(\frac{\delta^2 C(u, v)}{\delta u \delta v} = 0 \) almost everywhere in \(\mathbb{I}^2 \), then \(C \) is singular.

From the relation between copula and its components, one has

\[
A_C(1, 1) + S_C(1, 1) = C(1, 1) = 1
\]

The Fréchet - Hoeffding upper bound \(M(u, v) \) is singular and the product copula is absolutely continuous.
PART 3: The Inversion Method.
Let H be a bivariate function with continuous margins F and G. From Sklar’s theorem, there exists a copula such that

$$C(u, v) = H(F^{-1}(u), G^{-1}(v))$$

and

$$\hat{C}(u, v) = \tilde{H}(\bar{F}^{-1}(u), \bar{G}^{-1}(v))$$

where $\bar{F}^{-1}(t) = F^{-1}(1 - t)$.
Problem: Consider a system with two components whose life times are X and Y respectively, compute the probabilities that one or both components may fail.

- It is necessary to find the survival function

$$\tilde{H}(x, y) = P[X > x, Y > y]$$

- Assume that the “shock” of these components follow the Poisson processes with certain parameters:
 - Component 1 fail: λ_1
 - Component 2 fail: λ_2
 - Both components fail: λ_{12}
Let Z_1, Z_2 and Z_{12} be the times of the shocks and they are independent exponential random variables, then

$$X = \min(Z_1, Z_{12}) \quad \text{and} \quad Y = \min(Z_2, Z_{12})$$

For all $x, y \geq 0$,

$$\bar{H}(x, y) = \mathbb{P}[Z_1 > x] \mathbb{P}[Z_2 > y] \mathbb{P}[Z_{12} > \max(x, y)] = \exp\{-\lambda_1 x - \lambda_2 y - \lambda_{12} xy\}$$

The marginal distribution functions are

$$\bar{F}(x) = \exp\{-(\lambda_1 + \lambda_{12})x\} \quad \text{and} \quad \bar{G}(y) = \exp\{-(\lambda_2 + \lambda_{12})y\}$$
Survival copula

Since $\max(x, y) = x + y - \min(x, y)$, one has

$$\bar{H}(x, y) = \bar{F}(x) \bar{G}(y) \min(\exp\{\lambda_1 x\}, \exp\{\lambda_2 y\})$$

Denote by

$$\alpha = \lambda_{12}/(\lambda_1 + \lambda_{12}), \quad \beta = \lambda_{12}/(\lambda_2 + \lambda_{12})$$

and

$$u = \bar{F}(x), \quad v = \bar{G}(y)$$

then

$$\hat{C}(u, v) = uv \min(u^{-\alpha}, v^{-\beta}) = \min(u^{1-\alpha} v, uv^{1-\beta})$$

Denote by

$$C_{\alpha, \beta}(u, v) := \hat{C}(u, v).$$

Note that for any $\alpha, \beta \in [0, 1],

$$C_{\alpha, 0} = \prod = C_{0, \beta} \quad \text{and} \quad C_{1, 1} = M$$
Recall the copula $C_{\alpha,\beta}$

$$C_{\alpha,\beta}(u, v) = \begin{cases} u^{1-\alpha}v & u^\alpha \geq v^\beta \\ uv^{1-\beta}, & u^\alpha \leq v^\beta \end{cases}$$

For $u^\alpha \neq v^\beta$, the absolutely continuous component is

$$A_{\alpha,\beta}(u, v) = C_{\alpha,\beta}(u, v) - \frac{\alpha \beta}{\alpha + \beta - \alpha \beta} \left[\min(u^\alpha, v^\beta) \right]^{(\alpha + \beta - \alpha \beta)/(\alpha \beta)}$$

The singular component is

$$S_{\alpha,\beta}(u, v) = \int_0^{\min(u^\alpha, v^\beta)} t^{\frac{1}{\alpha} + \frac{1}{\beta} - 2} dt$$
Recall that

\[A_{\alpha,\beta}(1, 1) + S_{\alpha,\beta}(1, 1) = 1 \]

Hence,

\[S_{\alpha,\beta}(1, 1) = \frac{\alpha \beta}{\alpha + \beta - \alpha \beta} \]

If \(U, V \sim U[0, 1] \) with \(C_{UV} = C_{\alpha,\beta} \), then

\[\mathbb{P}[U^\alpha = V^\beta] = \frac{\alpha \beta}{\alpha + \beta - \alpha \beta} \]
Figure: Marshall - Olkin copulas, $(\alpha, \beta) = (1/2, 3/4), (1/3, 1/4)$
Let \((X, Y)\) denote the coordinates of the uniformly chosen point on the unit circle. In polar coordinate system, its coordinate is \((1, \theta)\), then

\[
X = \cos(\theta) \quad \text{and} \quad Y = \sin(\theta)
\]

or

\[
(X, Y) \in [0, 1]^2
\]

To find a copula \(C_{XY}\), one needs to find its joint distribution function \(H(x, y)\) for \((x, y) \in [0, 1]^2\).
The joint distribution function

\[H(x, y) = \mathbb{P}[\cos \theta < x, \sin \theta < y] \]

Since \((X, Y)\) is uniformly chosen on the circle, hence the probability of this point belongs to an arc is proportional to the length of the arc.
Intuition about JDF

Figure: Joint distribution function
Joint distribution function

\[H(x, y) = \begin{cases}
\frac{3}{4} - \frac{\arccos x + \arccos y}{2\pi}, & x^2 + y^2 \leq 1 \\
1 - \frac{\arccos x + \arccos y}{\pi}, & x^2 + y^2 > 1; x, y \geq 0 \\
1 - \frac{\arccos x}{\pi}, & x^2 + y^2 > 1; x < 0, y \geq 0 \\
1 - \frac{\arccos y}{\pi}, & x^2 + y^2 > 1; y < 0, x \geq 0 \\
0, & x^2 + y^2 > 1; x, y < 0
\end{cases} \]

- Its marginal distribution functions are
 \[F(x) = 1 - \frac{\arccos x}{\pi} \quad \text{and} \quad G(y) = 1 - \frac{\arccos y}{\pi}. \]

- Its quasi functions are
 \[F^{-1}(u) = \cos(\pi(u - 1)) \quad \text{and} \quad G^{-1}(v) = \cos(\pi(v - 1)) \]
The copula C_{XY}

► The inverse image of the circle $x^2 + y^1 = 1$ via transformations $x = F^{-1}(u), y = G^{-1}(v)$ is

$$|u - 1/2| + |v - 1/2| = 1/2.$$

► From the marginal distribution functions and the support of the copula C_{XY}, one has the formula of the copula

$$C(u, v) = \begin{cases}
M(u, v), & |u - v| > 1/2 \\
W(u, v), & |u - v + 1| > 1/2 \\
\frac{u+v}{2} - \frac{1}{4}, & otherwise
\end{cases}$$

► Note that $\delta^2 C/\delta u \delta v = 0$ almost everywhere in \mathbb{I}^2, hence C_{XY} is singular.
The copula C_{XY}

Figure: The copula C_{XY}
Now one has the copula C_{XY}, how to construct a bivariate distribution function with other margins?

Assume that our desired margin is standard Cauchy margin, which means

$$F(x) = \frac{1}{2} + \frac{\arctan x}{\pi} \quad \text{and} \quad G(y) = \frac{1}{2} + \frac{\arctan y}{\pi}$$

The procedure to get a bivariate distribution function is

1. Find the quasi functions from the marginal distribution functions
2. Find the image of the circle through these quasi functions
3. Replace the formula of quasi function to the formula of the copula
PART 4: The Algebraic Method.
Let X and Y be continuous random variables with a joint distribution function $H(x, y)$.

Considering the following quantity

$$\theta = \frac{H(x, y)[1 - F(x) - G(y) + H(x, y)]}{[F(x) - H(x, y)][G(y) - H(x, y)]}$$

where

$$H(x, y) = \Pr[X \leq x, Y \leq y]$$

$$1 - F(x) - G(y) + H(x, y) = \Pr[X > x, Y > y]$$

$$F(x) - H(x, y) = \Pr[X > x, Y \leq y]$$

$$G(y) - H(x, y) = \Pr[X \leq x, Y > y]$$
Which joint distribution function H that θ is a constant?
Constructing a copula

From Sklar’s theorem, assume that C_{XY} is the copula of two random variables X and Y, then

$$\theta = \frac{C(u, v)[1 - u - v + C(u, v)]}{[u - C(u, v)][v - C(u, v)]}$$

For different values of θ, one can find different forms of C_θ

1. If $\theta = 1$,

$$C_\theta(u, v) = uv$$

2. If $\theta \neq 1$,

$$C_\theta(u, v) = \frac{[1 + (\theta - 1)(u + v)]}{2(\theta - 1)}$$

$$\pm \sqrt{[1 + (\theta - 1)(u + v)]^2 - 4uv\theta(\theta - 1)}$$

$$2(\theta - 1)$$
In case of $\theta \neq 1$, one can find 2 different copulas with different signs in this expression.

\[
C_{\theta}(u, v) = \frac{[1 + (\theta - 1)(u + v)]}{2(\theta - 1)}
\]

\[
- \sqrt{[1 + (\theta - 1)(u + v)]^2 - 4uv\theta(\theta - 1)}
\]

and

\[
C_{\theta}(u, v) = \frac{[1 + (\theta - 1)(u + v)]}{2(\theta - 1)}
\]

\[
+ \sqrt{[1 + (\theta - 1)(u + v)]^2 - 4uv\theta(\theta - 1)}
\]

Duc T. Nguyen
One has

\[
C_{\theta}(u, 0) = \frac{[1 + (\theta - 1)u] \pm [1 + (\theta - 1)u]}{2(\theta - 1)}
\]

\[
C_{\theta}(u, 1) = \frac{[\theta + (\theta - 1)u] \pm [\theta + (\theta - 1)u]}{2(\theta - 1)}
\]

One can show that \(\delta^2 C(u, v)/\delta u \delta v \geq 0\) and

\[
C_{\theta}(u, v) = \int_0^u \int_0^v \frac{\delta^2 C(u, v)}{\delta u \delta v} du dv
\]

hence \(C_{\theta}(u, v)\) is an absolutely continuous copula.
If $\theta \to 0$ and $\theta \to 1$

- When $\theta = 0$, then
 $$C_0(u, v) = \max(0, u + v - 1)$$

- When $\theta = 1$, then
 $$C_1(u, v) = uv$$

These copulas are the Fréchet - Hoeffding bounds for an arbitrary copula.
Estimate θ from a data set

- Recall the definition of θ

$$\theta = \frac{H(x, y)[1 - F(x) - G(y) + H(x, y)]}{[F(x) - H(x, y)][G(y) - H(x, y)]}$$

- Our goal is to choose the optimal point (x_0, y_0) such that

$$\frac{H(x_0, y_0)[1 - F(x_0) - G(y_0) + H(x_0, y_0)]}{[F(x_0) - H(x_0, y_0)][G(y_0) - H(x_0, y_0)]} = \text{constant}$$

The above quantity can be computed with respect to (x_0, y_0) by analyzing the frequencies of points belonging to quadrant from the point (x_0, y_0).
Figure: Quadrants
One is interested in the ratio $\frac{\mathbb{P}[X > x]}{\mathbb{P}[X \leq x]}$, where X is a random variable representing the lifetime of an object.

Analogously, one is interested in the ratio $(1 - H(x, y))/H(x, y)$.
Two typical examples

Let X, Y be two random variables with joint distribution function

$$H(x, y) = (1 + e^{-x} + e^{-y})^{-1}$$

then

$$\frac{1 - H(x, y)}{H(x, y)} = \frac{1 - F(x)}{F(x)} + \frac{1 - G(y)}{G(y)}.$$

Let X, Y be two independent random variables, then

$$\frac{1 - H(x, y)}{H(x, y)} = \frac{1 - F(x)}{F(x)} + \frac{1 - G(y)}{G(y)} + \frac{1 - F(x)}{F(x)} \cdot \frac{1 - G(y)}{G(y)}.$$

Question: Which bivariate function $H(x, y)$ that satisfies the following equation

$$\frac{1 - H(x, y)}{H(x, y)} = \frac{1 - F(x)}{F(x)} + \frac{1 - G(y)}{G(y)} + (1 - \theta) \frac{1 - F(x)}{F(x)} \cdot \frac{1 - G(y)}{G(y)}$$

where $\theta \in (0, 1)$.

Denote $C_\theta(u, v)$ by the copula of X and Y, then

$$\frac{1 - C(u, v)}{C(u, v)} = \frac{1 - u}{u} + \frac{1 - v}{v} + (1 - \theta) \frac{1 - u}{u} \cdot \frac{1 - v}{v}$$

then

$$C_\theta(u, v) = \frac{uv}{1 - \theta(1 - u)(1 - v)}$$

One can check C_θ is a copula and it is absolutely continuous.
Let \((X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)\) be IID random variables with common joint distribution function \(H\) and marginal distribution function \(F\) and \(G\).

Denote \(C_n, H_n\) by the copula and joint distribution function of \(X_n\) and \(Y_n\) where

\[
X_n = \max\{Y_i\}, \quad Y_n = \max\{Y_i\}
\]

Denote \(F_n\) and \(G_n\) by the margins of \(X_n\) and \(Y_n\). then

\[
F_n(x) = [F(x)]^n, \quad \text{and} \quad G_n(y) = [G(y)]^n
\]
If C is the copula of $(X_i, Y_i), i = 1, \ldots, n$, then

$$H_{(n)}(x, y) = H^n(x, y) = C^n \left([F_{(n)}(x)]^{1/n}, [G_{(n)}(y)]^{1/n} \right)$$

or

$$C_{(n)}(u, v) = C^n(u^{1/n}, v^{1/n})$$

where $(u, v) \in \mathbb{I}^2$.
Theorem

Let \(\gamma : [0, 1] \rightarrow [0, 1] \) be continuous and strictly increasing with \(\gamma(0) = 0, \gamma(1) = 1 \), and let \(\gamma^{-1} \) denote the inverse of \(\gamma \). For an arbitrary copula \(C \) any \((u, v) \in \mathbb{I}^2 \), define the function \(C_\gamma \) by

\[
C_\gamma(u, v) = \gamma^{-1}(C(\gamma(u), \gamma(v)))
\]

Then \(C_\gamma \) is a copula if and only if \(\gamma \) is concave (or \(\gamma^{-1} \) is convex).
\[
\gamma^{-1} \text{ is convex } \Rightarrow C_{\gamma} \text{ is a copula}
\]

- Since \(\gamma(0) = 0 = \gamma^{-1}(0) \) and \(\gamma(1) = 1 = \gamma^{-1}(1) \), then for \((u, v) \in I^2\),

\[
C_{\gamma}(u, 0) = \gamma^{-1}(C(\gamma(u), 0)) = 0 = \gamma^{-1}(C(0, \gamma(v))) = C_{\gamma}(0, v)
\]

\[
C_{\gamma}(u, 1) = \gamma^{-1}(C(\gamma(u), 1)) = u
\]

\[
C_{\gamma}(1, v) = \gamma^{-1}(C(1, \gamma(v))) = v
\]

- Let \(K = [u_1, u_2] \times [v_1, v_2] \) be an arbitrary rectangle within in \(I^2 \), denote by

\[
a = C(\gamma(u_1), \gamma(v_1)), b = C(\gamma(u_1), \gamma(v_2)),
\]

\[
c = C(\gamma(u_2), \gamma(v_1)), d = C(\gamma(u_2, v_2), \gamma())
\]

then,

\[
\gamma^{-1}(b) - \gamma^{-1}(a) \leq \gamma^{-1}(d) - \gamma^{-1}(c)
\]

or

\[
V_{C_{\gamma}}(K) \geq 0
\]
For any \(a, d \) in \([0, 1]\) such that \(a \leq d \), let

\[
\begin{align*}
u_1 &= v_1 = \gamma^{-1}((a + 1)/2), & u_2 &= v_2 = \gamma^{-1}((d + 1)/2),
\end{align*}
\]

Since \(C_\gamma \) is a copula, then the \(C_\gamma \) - measure of the rectangle \(K = [u_1, v_1] \times [u_2, v_2] \) is non-negative. Hence

\[
\gamma^{-1}(a) - 2\gamma^{-1}((a + d)/2) + \gamma^{-1}(d) \geq 0
\]

which implies \(\gamma^{-1} \) is convex.