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Chapter 1: Definitions

Motivation

Let X and Y be continuous random variables, with joint distribution
function H and marginal distribution functions F and G.

Saw cases in which

AH(x,¥))) = MFC)A(G(x))

for a function \.
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Chapter 1: Definitions

Motivation
Let X and Y be continuous random variables, with joint distribution

function H and marginal distribution functions F and G.
Saw cases in which

AH(x,y)) = AFC)DA(G(x))

for a function \.
For copulas, and if we define p(t) = — log(A(t)) we have

o(C(u,v)) = p(u) + »(v)
= Cu,v) = el H((u) + ¢(v))
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Definition 1.1.
Let ¢ : I — [0, 00] continuous, strictly decreasing such that
©(1) = 0. The pseudo-inverse ¢[~1 : [0,00] — | is defined as

(10[—1](1.) _ {‘Pl(t)a 0<t

< ¢(0)
0, 0(0) <t <o
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Lemma 1.2.(Properties of pseudo-inverse)
Let o[~ be defined as above. Then

(i) @71 is continuous, non-increasing on [0, oc] and strictly
decreasing on [0, ©(0)].
(i) Ve el: ol H(p(t) =t
(i) Vtel: go(gol_l](t)) = min(t, p(0))
(iv) 9(0) = co = I~ = o
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Lemma 1.3.
Let ¢ : I — [0, 00] continuous, strictly decreasing such that
©(1) = 0, and let [~ be the pseudo-inverse. Let C : 17 — 1
defined by

C(u,v) = ¢l (p(u) + ¢(v))

Then C satisfies the boundary conditions for a copula that is for

every u,v €l
C(u,0) = C(0,v) =0

and
C(u,1)=u, C(L,v)=v.
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Proof.
Let u € I. By definition of o[~ it follows that

C(u,0) = ! H(p(u) + ¢(0)) = 0

and
Cu,1) = ol H(p(u) + (1)) = e (p(u) = u

By symmetry the claim follows.
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Lemma 1.4.
Let ¢ : I — [0, 00] continuous, strictly decreasing such that
©(1) = 0, and let [~ be the pseudo-inverse. Let C : 17 — 1

defined by
C(u,v) = ¢l (p(u) + ¢(v))

Then C is 2-increasing if and only if for all v € I:

v <wup = Clu,v) — Clug,v) <wm— g
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Proof.
"=" Note that C(u2,v) — C(u1,v) < up — vy is equivalent to
Ve([ur, un] X [v,1]) > 0, which is true if C is 2-increasing.
"<" Now assume that for all v € I:

v < up = Clu,v) — C(ug,v) < ux — uy.
Let vi,v» € I with vy < v». By Lemma 1.2.

C(O, V2) =0 S Vi S Vo = C(]_, V2).

Therefore by continuity of C there exists a t in | with
C(t, V2) = V1.
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C(uz,v1) — Clug,v1) =

The claim follows.

IN

(o (u2) + ¢ (v2) + (1)) -
P (p(n) + o(va) + (1))
C(C(u2, v2), t) — C(C(u1, v2), t)
C(u2, v2) — C(u1, v2)
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Theorem 1.5.

Let ¢ : I — [0, 00] continuous, strictly decreasing such that
©(1) = 0, and let [~ be the pseudo-inverse. Let C : 17 — 1
defined as before. Then C is a copula if and only if ¢ is convex.

In this case C is called Archimedean copula, and ¢ is called
generator of C. If ¢(0) = oo, ¢ is a strict generator and C is
called strict Archimedean copula.
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Proof.
By the preceding Lemmata it is enough to show that

Vv el:(u <u= Clup,v)— Clur,v) < up— u1) & @ convex

This is a bit technical so we skip the proof.
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Example 1.6.
(a) Let ¢(t) = —log(t), t € [0,1]. It follows that C(u,v) = uv.
(b) Let p(t) =1—1t, t €0,1]. It follows that

C(u,v) = max(u+v—1,0).
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Chapter 2: One-parameter families

» By Theorem 1.5. Archimedean copulas can be contructed by
finding a suitable generator

» Archimedean Copulas easy to construct

> Wide variety of dependence structures

> Two example one-parameter families:
Co(u,v) wo(t) 0e Special cases

Collu,v) = exp(—[(— log u)’] + (~ log(V)")[?) () — (~ log £)° Loo) G-I Co=M
Co(u,v) = max(fuv + (1 — 0)(u+ v —1),0) po(t) = —log(ft+ (1—-0)) (0,1 Go=W, G=]]
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Figure: Scatterplots, § = 0.4 (left) and 6 = 0.9 (right)
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Chapter 3: Fundamental Properties

For simplicity let ©Q denote the set of continuous strictly decreasing
convex functions ¢ : | — [0, oo] with (1) = 0.

Theorem 3.1.
Let C be an Archimedean copula generated by ¢ € Q. Let K¢(t)
denote the C-measure of the set

{(u,v) € P[C(u,v) < t} = {(u,v) € Plp(u) + ¢(v) = o(t)}-

Then for any t in |
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Proof.

Let t be in (0,1), and set w = ¢(t). Let n € N. Let
W :={0,%,..., 2} be a partition of [0, w] and

T :={t=ty,...,t, =1} be a partition of [t, 1] with

It follows that

Cty, te) = o (o(ty) + () = o H(w + L,;—"W)

Especially C(tj,t,—j) =t.
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Proof.
Denote [tkfl, tk] X [O, tn,k+1] by R, and let S, = UZ:le-

Then we have K¢(t) is the sum of the C-measure of [0, t] x | and
limp—o00 Vc(Sn), since

0<ti—to<...<th—th

and lim,_o th — th—1 = 0.
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Proof.
And for each k

w
Ve(Re) = Cltk, ta—ks1) — t = ol (w — =) - o1 (w)

and hence

P (w) — T (w — w/n)
w/n

Ve(Sn) = Z Ve(Re) = —w
k=1

The claim follows by taking the limit n — oo.
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Corollary 3.2.

Let C be an Archimedean copula generated by ¢ € €. Let
K¢ (s, t) denote the C-measure of the set

{(u,v) € Plu<s,C(u,v) < t}

Then for any (s, t) € I

K'( ) S, s<t
c\s;t) = —o(s
t— 2o oy
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Corollary 3.3.

Let U and V be uniform (0,1) random variables with joint
distribution function C generated by ¢ € Q. Then the function K¢
is the distribution function of C(U, V). Furthermore, the function
K¢ is the joint distribution function of U and C(U, V).
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Order and Limiting Cases

Chapter 4: Order and Limiting Cases

Definition 4.1.

Let C; and G, be Copulas, we say (i is smaller than G (or G, is
larger than Cp), and write G; < G, (or Gy = Gy) if

Ci(u,v) < G(u,v) for all u, v in L.

We say a family {Cy} of copulas is positively ordered if
a<fB=C< G
The family is negatively ordered if

a<B=Cy> Cs
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Example 4.2. Consider this one-parameter family of Archimedean
copulas:

Cg(u, V) gOg(l’) 0 e
Co(u,v) =6/ Iog(eg/“ +ef/v — e pp(t) = e/t — f (0, 00)

Now let 01,6, € (0,00), 01 < 5. Is there a relation between

91 92
and ?
log(ef1/u + ef1/v — €f) log(ef%2/u + ef2/v — &)
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Definition 4.3.
A function f : [0,00) — R is subadditive if for all x,y € [0, c0)

f(x+y) < f(x)+f(y).

Theorem 4.4.

Let C; and G, be Archimedean copulas generated by ¢; and (5 in

Q. Then ¢; < G if and only if g7 o 80[271] is subadditive.
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Proof. Let f =30 qp[z*l]. f is continuous, nondecreasing, and

f(0) = 0. Per definitionem, C; < G if and only if for all u, v in I,
A er(w) + 1)) < @5 o) + 22(v)):
Let x = ¢o(u) and y = pa(v), then the above is equivalent to
A + () < o5 Nt y) (1)

for all x,y in [0, p2(0)].In addition if x > ¢2(0) or y > ¢2(0), then
(1) reduces to 0 < 0.
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Proof.
() + F(1) < o5 (x4 y) (1)

"=" Now let C; < (5. The claim follows by applying ¢1 to both
sides of (1).

"<" Conversely let f be subadditive we can apply ¢; o

f(x+y) < f(x)+f(y)

which yields the desired relation.
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Theorem 4.5.
Let {Cy|0 € ©} be a family of Archimedean copulas with
differentiable generators @y in Q. Then C = lim Cy is an
Archimedean copula if and only if there exists a function ¢ in Q
such that for all s, t in (0,1):

i £015) _ 205

wp(t)  ¢'(t)

where lim denotes the appropriate one-sided limit as 8 approaches
an end point of the parameter interval. The generator of C is .
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Proof.

Let (Up, Vi) be uniform (0,1) random variables with joint
distribution function Cy, let Ky denote the distribution function of
Co(Up, Vi) and let K)) denote the joint distribution function of Uy
and Cy(Up, V). By Corollaries 3.2. and 3.3. we get

Kj(s,t) =t —

forO<t<s<1and

for all tin |
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Proof.

Now let (U, V) be uniform (0,1) random variables with joint
distribution function C, let K be the distribution function of

C(U, V) and let K’ denote the joint distribution function of U and

c(U, V).

Assume C = lim Cy is Archimedean with generator ¢. So

, polt) _ o _ L
hmt—(pg(t)_l Ko(t) = K(t) =t (1)

for t € I. This proves the claim for s = t.
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For 0 < t < s < 1. It now holds that

_ po(t) 900(5)_im (s t) = K'(s. t) = t —
) T a0 = K =

limt
im )
And with (1) we get

im £0(8) _ ¢(s)
pp(t)  ¢'(t)
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Conversely, assume that for all s, t in (0, 1):

wo(s) _ #(s)
m-= o
wp(t) (1)
We therefore have positive constants ¢y such that for all ¢t € (0, 1],
lim copp(t) = (t). So

lim gog-ll(c;e) _ S,

It follows

lim oy Na(u) + a(v)] = ol Ulp(u) + ¢(v)]

for fixed u,v € 1.
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Example 4.6.
> Let y(t) = —log(ft + (1 —0)), 6 € (0,1]. Using L'Hospital:
wo(s) . log(fs+(1—-19))

004 oh(t) om0 0/t +(1—0))

So it follows Cp = W.
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Example 4.6.
> Let pp(t) = —log(6t + (1 —0)), 6 € (0,1]. Then we have
wo(s) . log(fs+(1-19))

e e a6t - (1—0)) ' °8°

So it follows C; = [].
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Chapter 5: Two-parameter families

Aim: Construct two-parameter families of Archimedean copulas
One approach is to compose generators with the power function
tt? 0>0.

Theorem 5.1. Let p € Q, let a, 5 > 0 and define
Pa,1(t) = p(t*) p16(t) = [p(1))°
If 3>1, then 153 € Q. If aisin (0,1], then ¢, 1 € Q.

If ¢ is twice differentiable and t¢'(t) is nondecreasing on (0, 1),
then ¢, 1 is an element of € for all a > 0.
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To construct a two-parameter family of copulas we can now define

Pa,(t) = [p(t"))

and note that ¢, g € Q if we choose av and 3 as in the Theorem
above.

Example 5.2. Let ¢(t) =1 — t and using our approach we define
0ap(t) = (1 —t*)? for a € (0,1], B > 1. This generates

Co,p(u, v) = max ({1 —(1-uv*)P+ (- va)ﬁ)l/’ﬂ v ,O)
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