

Archimedean Copulas

David Ziener | February 3, 2021 | Institute of Stochastics

| February 3, 2021

Table of Contents

Definitions

- One-parameter families
- **Fundamental Properties**
- Order and Limiting Cases
- Two-parameter families

Chapter 1: Definitions

Motivation

Let X and Y be continuous random variables, with joint distribution function H and marginal distribution functions F and G. Saw cases in which

$$\lambda(H(x,y))) = \lambda(F(x))\lambda((G(y)))$$

for a function λ .

Chapter 1: Definitions

Motivation

Let X and Y be continuous random variables, with joint distribution function H and marginal distribution functions F and G. Saw cases in which

$$\lambda(H(x,y)) = \lambda(F(x))\lambda((G(y)))$$

for a function λ .

For copulas, and if we define $\varphi(t) = -\log(\lambda(t))$ we have

$$\begin{aligned} \varphi(\mathcal{C}(u,v)) &= \varphi(u) + \varphi(v) \\ \Rightarrow \qquad \mathcal{C}(u,v) &= \varphi^{[-1]}(\varphi(u) + \varphi(v)) \end{aligned}$$

Definition 1.1.

Let $\varphi: \mathbf{I} \to [0, \infty]$ continuous, strictly decreasing such that $\varphi(1) = 0$. The pseudo-inverse $\varphi^{[-1]}: [0, \infty] \to \mathbf{I}$ is defined as

$$arphi^{[-1]}(t) = egin{cases} arphi^{-1}(t), & 0 \leq t \leq arphi(0) \ 0, & arphi(0) \leq t \leq \infty \end{cases}$$

Lemma 1.2.(Properties of pseudo-inverse)
Let φ^[-1] be defined as above. Then

(i) φ^[-1] is continuous, non-increasing on [0,∞] and strictly decreasing on [0, φ(0)].
(ii) ∀t ∈ I : φ^[-1](φ(t)) = t
(iii) ∀t ∈ I : φ(φ^[-1](t)) = min(t, φ(0))
(iv) φ(0) = ∞ ⇒ φ^[-1] = φ⁻¹

Lemma 1.3.

Let $\varphi : \mathbf{I} \to [0, \infty]$ continuous, strictly decreasing such that $\varphi(1) = 0$, and let $\varphi^{[-1]}$ be the pseudo-inverse. Let $C : \mathbf{I}^2 \to \mathbf{I}$ defined by

$$C(u, v) = \varphi^{[-1]}(\varphi(u) + \varphi(v))$$

Then C satisfies the boundary conditions for a copula that is for every $u, v \in \mathbf{I}$

$$C(u,0)=C(0,v)=0$$

and

$$C(u,1)=u, \quad C(1,v)=v.$$

Proof. Let $u \in \mathbf{I}$. By definition of $\varphi^{[-1]}$ it follows that

$$C(u,0) = \varphi^{[-1]}(\varphi(u) + \varphi(0)) = 0$$

and

$$C(u,1) = \varphi^{[-1]}(\varphi(u) + \varphi(1)) = \varphi^{[-1]}(\varphi(u)) = u$$

By symmetry the claim follows.

Lemma 1.4.

Let $\varphi: \mathbf{I} \to [0, \infty]$ continuous, strictly decreasing such that $\varphi(1) = 0$, and let $\varphi^{[-1]}$ be the pseudo-inverse. Let $C: \mathbf{I}^2 \to \mathbf{I}$ defined by

$$C(u,v) = \varphi^{[-1]}(\varphi(u) + \varphi(v))$$

Then C is 2-increasing if and only if for all $v \in I$:

$$u_1 \leq u_2 \Rightarrow C(u_2, v) - C(u_1, v) \leq u_2 - u_1$$

" \Rightarrow " Note that $C(u_2, v) - C(u_1, v) \le u_2 - u_1$ is equivalent to $V_C([u_1, u_2] \times [v, 1]) \ge 0$, which is true if C is 2-increasing.

" \Leftarrow " Now assume that for all $v \in I$:

$$u_1 \leq u_2 \Rightarrow C(u_2, v) - C(u_1, v) \leq u_2 - u_1.$$

Let $v_1, v_2 \in I$ with $v_1 \leq v_2$. By Lemma 1.2.

$$C(0, v_2) = 0 \le v_1 \le v_2 = C(1, v_2).$$

Therefore by continuity of *C* there exists a *t* in **I** with $C(t, v_2) = v_1$.

$$C(u_{2}, v_{1}) - C(u_{1}, v_{1}) = \qquad \varphi^{[-1]}(\varphi(u_{2}) + \varphi(v_{2}) + \varphi(t)) - \\ \varphi^{[-1]}(\varphi(u_{1}) + \varphi(v_{2}) + \varphi(t)) \\ = \qquad C(C(u_{2}, v_{2}), t) - C(C(u_{1}, v_{2}), t) \\ \leq \qquad C(u_{2}, v_{2}) - C(u_{1}, v_{2})$$

The claim follows.

Theorem 1.5.

Let $\varphi : \mathbf{I} \to [0, \infty]$ continuous, strictly decreasing such that $\varphi(1) = 0$, and let $\varphi^{[-1]}$ be the pseudo-inverse. Let $C : \mathbf{I}^2 \to \mathbf{I}$ defined as before. Then C is a copula if and only if φ is convex.

In this case C is called Archimedean copula, and φ is called generator of C. If $\varphi(0) = \infty$, φ is a strict generator and C is called strict Archimedean copula.

By the preceding Lemmata it is enough to show that

 $\forall v \in \mathbf{I} : (u_1 \leq u_2 \Rightarrow C(u_2, v) - C(u_1, v) \leq u_2 - u_1) \Leftrightarrow \varphi \text{ convex}$

This is a bit technical so we skip the proof.

Example 1.6.

Chapter 2: One-parameter families

- By Theorem 1.5. Archimedean copulas can be contructed by finding a suitable generator
- Archimedean Copulas easy to construct
- Wide variety of dependence structures
- Two example one-parameter families:

$C_{ heta}(u,v)$	$arphi_{ heta}(t)$	$\theta \in$	Special cases
$C_{\theta}(u, v) = \exp(-[(-\log u)^{\theta}] + (-\log(v)^{\theta})]^{1/\theta})$ $C_{\theta}(u, v) = \max(\theta uv + (1 - \theta)(u + v - 1), 0)$	$arphi_{ heta}(t) = (-\log t)^{ heta} \ arphi_{ heta}(t) = -\log(heta t + (1- heta))$	$\begin{matrix} [1,\infty) \\ (0,1] \end{matrix}$	$\begin{array}{l} C_1 = \prod, \ C_\infty = M \\ C_0 = W, \ C_1 = \prod \end{array}$

Figure: Scatterplots, $\theta = 0.4$ (left) and $\theta = 0.9$ (right)

Chapter 3: Fundamental Properties

For simplicity let Ω denote the set of continuous strictly decreasing convex functions $\varphi : \mathbf{I} \to [0, \infty]$ with $\varphi(1) = 0$.

Theorem 3.1.

Let *C* be an Archimedean copula generated by $\varphi \in \Omega$. Let $K_C(t)$ denote the *C*-measure of the set

$$\{(u,v)\in \mathsf{I}^2|C(u,v)\leq t\}=\{(u,v)\in \mathsf{I}^2|\varphi(u)+\varphi(v)\geq \varphi(t)\}.$$

Then for any t in I

$${\mathcal K}_{\mathcal C}(t)=t-rac{arphi(t)}{arphi'(t+)}$$

Let t be in (0,1), and set $w = \varphi(t)$. Let $n \in \mathbb{N}$. Let $W := \{0, \frac{w}{n}, \dots, \frac{wn}{n}\}$ be a partition of [0, w] and $T := \{t = t_0, \dots, t_n = 1\}$ be a partition of [t, 1] with

$$t_{n-k} = \varphi^{[-1]}(\frac{kw}{n}), \quad k = 0, 1, \dots, n$$

It follows that

$$C(t_j, t_k) = \varphi^{[-1]}(\varphi(t_j) + \varphi(t_k)) = \varphi^{[-1]}(w + \frac{n-j-k}{n}w)$$

Especially $C(t_i, t_{n-i}) = t$.

Denote
$$[t_{k-1}, t_k] \times [0, t_{n-k+1}]$$
 by R_k , and let $S_n = \bigcup_{k=1}^n R_k$.

Then we have $K_C(t)$ is the sum of the *C*-measure of $[0, t] \times I$ and $\lim_{n\to\infty} V_C(S_n)$, since

$$0 \leq t_1 - t_0 \leq \ldots \leq t_n - t_{n-1}$$

and $\lim_{n\to\infty} t_n - t_{n-1} = 0$.

And for each k

$$V_C(R_k) = C(t_k, t_{n-k+1}) - t = \varphi^{[-1]}(w - \frac{w}{n}) - \varphi^{[-1]}(w)$$

and hence

$$V_C(S_n) = \sum_{k=1}^n V_C(R_k) = -w \left[\frac{\varphi^{[-1]}(w) - \varphi^{[-1]}(w - w/n)}{w/n} \right]$$

The claim follows by taking the limit $n \to \infty$.

Corollary 3.2.

Let C be an Archimedean copula generated by $\varphi \in \Omega$. Let $K'_C(s,t)$ denote the C-measure of the set

$$\{(u,v)\in \mathbf{l}^2|u\leq s, C(u,v)\leq t\}$$

Then for any $(s, t) \in \mathbf{I}^2$

$$\mathcal{K}_{\mathcal{C}}'(s,t) = egin{cases} s, & s \leq t \ t - rac{arphi(t) - arphi(s)}{arphi'(t^+)} & s > t \end{cases}$$

Corollary 3.3.

Let U and V be uniform (0,1) random variables with joint distribution function C generated by $\varphi \in \Omega$. Then the function K_C is the distribution function of C(U, V). Furthermore, the function K'_C is the joint distribution function of U and C(U, V).

February 3, 2021

Chapter 4: Order and Limiting Cases

Definition 4.1. Let C_1 and C_2 be Copulas, we say C_1 is smaller than C_2 (or C_2 is larger than C_1), and write $C_1 \prec C_2$ (or $C_2 \succ C_1$) if $C_1(u, v) \leq C_2(u, v)$ for all u, v in **I**.

We say a family $\{C_{\theta}\}$ of copulas is positively ordered if

$$\alpha \leq \beta \Rightarrow C_{\alpha} \prec C_{\beta}.$$

The family is negatively ordered if

$$\alpha \leq \beta \Rightarrow C_{\alpha} \succ C_{\beta}$$

Example 4.2. Consider this one-parameter family of Archimedean copulas:

$$egin{aligned} & C_{ heta}(u,v) & & arphi_{ heta}(t) & heta \in \ \hline & C_{ heta}(u,v) = heta/\log(e^{ heta/u}+e^{ heta/v}-e^{ heta}) & arphi_{ heta}(t) = e^{ heta/t}-e^{ heta} & (0,\infty) \end{aligned}$$

Now let $\theta_1, \theta_2 \in (0, \infty)$, $\theta_1 \leq \theta_2$. Is there a relation between

$$\frac{\theta_1}{\log(e^{\theta_1/u}+e^{\theta_1/v}-e_1^\theta)} \text{ and } \frac{\theta_2}{\log(e^{\theta_2/u}+e^{\theta_2/v}-e_2^\theta)}?$$

Definition 4.3.

A function $f:[0,\infty) \to \mathbb{R}$ is subadditive if for all $x, y \in [0,\infty)$

$$f(x+y) \leq f(x) + f(y).$$

Theorem 4.4.

Let C_1 and C_2 be Archimedean copulas generated by φ_1 and φ_2 in Ω . Then $C_1 \prec C_2$ if and only if $\varphi_1 \circ \varphi_2^{[-1]}$ is subadditive.

Proof. Let $f = \varphi_1 \circ \varphi_2^{[-1]}$. f is continuous, nondecreasing, and f(0) = 0. Per definitionem, $C_1 \prec C_2$ if and only if for all u, v in **I**,

$$arphi_1^{[-1]}(arphi_1(u)+arphi_1(v))\leq arphi_2^{[-1]}(arphi_2(u)+arphi_2(v)).$$

Let $x = \varphi_2(u)$ and $y = \varphi_2(v)$, then the above is equivalent to

$$\varphi_1^{[-1]}(f(x) + f(y)) \le \varphi_2^{[-1]}(x + y) \tag{1}$$

for all x, y in $[0, \varphi_2(0)]$. In addition if $x > \varphi_2(0)$ or $y > \varphi_2(0)$, then (1) reduces to 0 < 0.

$$\varphi_1^{[-1]}(f(x) + f(y)) \le \varphi_2^{[-1]}(x + y) \tag{1}$$

" \Rightarrow " Now let $C_1 \prec C_2$. The claim follows by applying φ_1 to both sides of (1). " \Leftarrow " Conversely let f be subadditive we can apply $\varphi_1^{[-1]}$ to

$$f(x+y) \le f(x) + f(y)$$

which yields the desired relation.

Theorem 4.5.

Let $\{C_{\theta}|\theta \in \Theta\}$ be a family of Archimedean copulas with differentiable generators φ_{θ} in Ω . Then $C = \lim C_{\theta}$ is an Archimedean copula if and only if there exists a function φ in Ω such that for all s, t in (0, 1):

$$\operatorname{im} rac{arphi_{ heta}(s)}{arphi_{ heta}'(t)} = rac{arphi(s)}{arphi'(t)}$$

where lim denotes the appropriate one-sided limit as θ approaches an end point of the parameter interval. The generator of *C* is φ .

Let (U_{θ}, V_{θ}) be uniform (0,1) random variables with joint distribution function C_{θ} , let K_{θ} denote the distribution function of $C_{\theta}(U_{\theta}, V_{\theta})$ and let K'_{θ} denote the joint distribution function of U_{θ} and $C_{\theta}(U_{\theta}, V_{\theta})$. By Corollaries 3.2. and 3.3. we get

$$\mathcal{K}_ heta'(s,t) = t - rac{arphi_ heta(t)}{arphi_ heta'(t)} + rac{arphi_ heta(s)}{arphi_ heta'(t)}$$

for 0 < t < s < 1 and

$$\mathcal{K}_ heta(t) = t - rac{arphi_ heta(t)}{arphi_ heta'(t)}$$

for all t in I

Now let (U, V) be uniform (0,1) random variables with joint distribution function C, let K be the distribution function of C(U, V) and let K' denote the joint distribution function of U and C(U, V).

Assume $C = \lim C_{\theta}$ is Archimedean with generator φ . So

$$\lim t - \frac{\varphi_{\theta}(t)}{\varphi_{\theta}'(t)} = \lim K_{\theta}(t) = K(t) = t - \frac{\varphi(t)}{\varphi'(t)}$$
(1)

for $t \in I$. This proves the claim for s = t.

For 0 < t < s < 1. It now holds that

$$\lim t - \frac{\varphi_{\theta}(t)}{\varphi_{\theta}'(t)} + \frac{\varphi_{\theta}(s)}{\varphi_{\theta}'(t)} = \lim K_{\theta}'(s,t) = K'(s,t) = t - \frac{\varphi(t)}{\varphi'(t)} + \frac{\varphi(s)}{\varphi'(t)}$$

And with (1) we get

$$\lim rac{arphi_{ heta}(s)}{arphi_{ heta}'(t)} = rac{arphi(s)}{arphi'(t)}.$$

Conversely, assume that for all s, t in (0, 1):

$$\lim rac{arphi_{ heta}(s)}{arphi_{ heta}'(t)} = rac{arphi(s)}{arphi'(t)}$$

We therefore have positive constants c_{θ} such that for all $t \in (0, 1]$, lim $c_{\theta}\varphi_{\theta}(t) = \varphi(t)$. So

$$\lim \varphi_{\theta}^{[-1]}(\frac{\cdot}{c_{\theta}}) = \varphi^{[-1]}(\cdot).$$

It follows

$$\lim \varphi_{\theta}^{[-1]}[\varphi_{\theta}(u) + \varphi_{\theta}(v)] = \varphi^{[-1]}[\varphi(u) + \varphi(v)]$$

for fixed $u, v \in I$.

Example 4.6.

▶ Let $\varphi_{\theta}(t) = -\log(\theta t + (1 - \theta))$, $\theta \in (0, 1]$. Using L'Hospital:

$$\lim_{\theta \to 0+} \frac{\varphi_{\theta}(s)}{\varphi_{\theta}'(t)} = \lim_{\theta \to 0+} \frac{\log(\theta s + (1 - \theta))}{\theta/(\theta t + (1 - \theta))} = s - 1$$

So it follows $C_0 = W$.

Example 4.6. • Let $\varphi_{\theta}(t) = -\log(\theta t + (1 - \theta)), \ \theta \in (0, 1]$. Then we have $\lim_{\theta \to 1^{-}} \frac{\varphi_{\theta}(s)}{\varphi'_{\theta}(t)} = \lim_{\theta \to 1^{-}} \frac{\log(\theta s + (1 - \theta))}{\theta/(\theta t + (1 - \theta))} = t \log s$

So it follows $C_1 = \prod$.

Chapter 5: Two-parameter families

Aim: Construct two-parameter families of Archimedean copulas One approach is to compose generators with the power function $t \mapsto t^{\theta}$, $\theta > 0$.

Theorem 5.1. Let $\varphi \in \Omega$, let $\alpha, \beta > 0$ and define

$$arphi_{lpha,1}(t)=arphi(t^{lpha}) \qquad \qquad arphi_{1,eta}(t)=[arphi(t)]^{eta}$$

If $\beta \geq 1$, then $\varphi_{1,\beta} \in \Omega$. If α is in (0,1], then $\varphi_{\alpha,1} \in \Omega$. If φ is twice differentiable and $t\varphi'(t)$ is nondecreasing on (0,1), then $\varphi_{\alpha,1}$ is an element of Ω for all $\alpha > 0$. To construct a two-parameter family of copulas we can now define

$$arphi_{lpha,eta}(t)=[arphi(t^{lpha})]^{eta}$$

and note that $\varphi_{\alpha,\beta}\in\Omega$ if we choose α and β as in the Theorem above.

Example 5.2. Let $\varphi(t) = 1 - t$ and using our approach we define $\varphi_{\alpha,\beta}(t) = (1 - t^{\alpha})^{\beta}$ for $\alpha \in (0, 1]$, $\beta \ge 1$. This generates

$$\mathcal{C}_{lpha,eta}(u, \mathbf{v}) = \max\left(\left[1-((1-u^lpha)^eta+(1-v^lpha)^eta)^{1/eta}
ight]^{1/lpha},0
ight)$$