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Concordance

Motivation example: Let X be a symmetric random variable. Then X and Y = X 2 are
obviously dependent. What about correlation?

Corr(X ,Y ) = E(XX 2)− EX 2EX = 0− 0 = 0.

I Informally, a pair of random variables are concordant if “large” values of one tend
to be associated with “large” values of the other and “small” values of one with
“small” values of the other.

I Formally, let (xi , yi ) and (xj , yj ) denote two observations from a vector (X ,Y ).
We say that (xi , yi ) and (xj , yj ) are concordant if xi < xj and yi < yj , or if xi > xj
and yi > yj . We say that (xi , yi ) and (xj , yj ) are discordant if xi < xj and yi > yj
or if xi > xj and yi < yj .

I The alternate formulation: (xi , yi ) and (xj , yj ) are concordant if
(xi − xj )(yi − yj ) > 0 and discordant if (xi − xj )(yi − yj ) < 0.
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Kendall’s τ

I Let {(x1, y1), (x2, y2), . . . , (xn, yn)} denote a random sample of n observations
from a vector (X ,Y ) of continuous random variables.

I Each distinct pair is either concordant or discordant. Let c denote the number of
concordant pairs and d the number of discordant pairs. Then Kendall’s τ for the
sample is defined as

t =
c − d
c + d

=
c − d(n

2

) .

I Let (X1,Y1) and (X2,Y2) be i.i.d. random vectors, each with joint distribution
function H. Then the population version of Kendall’s τ is defined as the
probability of concordance minus the probability of discordance:

τ = τX ,Y = P[(X1 − X2)(Y1 − Y2) > 0]− P[(X1 − X2)(Y1 − Y2) < 0].
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Theorem 1
Let (X1,Y1) and (X2,Y2) be independent vectors of continuous random variables with
joint distribution functions H1 and H2, respectively, with common margins F (of X1 and
X2) and G (of Y1 and Y2). Let C1 and C2 denote the copulas of (X1,Y1) and (X2,Y2),
respectively, so that H1(x , y) = C1(F (x),G(y)) and H2(x , y) = C2(F (x),G(y)). Let
Q denote the difference between the probabilities of concordance and discordance of
(X1,Y1) and (X2,Y2), i.e., let

Q = P[(X1 − X2)(Y1 − Y2) > 0]− P[(X1 − X2)(Y1 − Y2) < 0].

Then
Q = Q(C1,C2) = 4

∫
I2

C2(u, v)dC1(u, v)− 1.

Proof: The random variables are continuous:
P[(X1 − X2)(Y1 − Y2) < 0] = 1− P[(X1 − X2)(Y1 − Y2) > 0] and hence
Q = 2P[(X1 − X2)(Y1 − Y2) > 0]− 1.

P[(X1 − X2)(Y1 − Y2) > 0] = P[X1 > X2,Y1 > Y2] + P[X1 < X2,Y1 < Y2].
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P[X1 > X2,Y1 > Y2] = P[X2 < X1,Y2 < Y1] =

∫
R2

P[X2 < x ,Y2 < y ]dH1(x , y)

=

∫
R2

C2(F (x),G(y))dC1(F (x),G(y)) =

∫
I2

C2(u, v)dC1(u, v)

Similarly,

P[X1 < X2,Y1 < Y2] =

∫
R2

P[X2 > x ,Y2 > y ]dH1(x , y)

=

∫
R2

[1− F (x)− F (y) + C2(F (x),G(y))]dC1(F (x),G(y))

=

∫
I2

(1− u − v + C2(u, v))dC1(u, v) =

∫
I2

C2(u, v)dC1(u, v).

Thus, P[(X1 − X2)(Y1 − Y2) > 0] = 2
∫

I2 C2(u, v)dC1(u, v) and

Q = Q(C1,C2) = 4
∫

I2
C2(u, v)dC1(u, v)− 1.
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Corollary 2
Let C1,C2, and Q be as given in Theorem 1. Then

1. Q is symmetric in its arguments: Q(C1,C2) = Q(C2,C1).

2. Q is non-decreasing in each argument: if C1 < C′1 and C2 < C′2 for all
(u, v) ∈ I2, then Q(C1,C2) ≤ Q(C′1,C

′
2).

3. Copulas can be replaced by survival copulas in Q, i.e., Q(C1,C2) = Q(Ĉ1, Ĉ2).

Example 3
M(u, v) = min(u, v), W (u, v) = max(u + v − 1, 0), Π(u, v) = uv .

Q(W ,W ) = −1, Q(W ,Π) = −1/3, Q(W ,M) = 0,
Q(Π,W ) = −1/3, Q(Π,Π) = 0, Q(Π,M) = 1/3,
Q(M,W ) = 0, Q(M,Π) = 1/3, Q(M,M) = 1.

Let C be an arbitrary copula, then
Q(W ,C) ∈ [−1, 0], Q(Π,C) ∈ [−1/3,−1/3], Q(M,C) ∈ [0, 1].
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Corollary 2
Let C1,C2, and Q be as given in Theorem 1. Then

1. Q is symmetric in its arguments: Q(C1,C2) = Q(C2,C1).

2. Q is non-decreasing in each argument: if C1 < C′1 and C2 < C′2 for all
(u, v) ∈ I2, then Q(C1,C2) ≤ Q(C′1,C

′
2).

3. Copulas can be replaced by survival copulas in Q, i.e., Q(C1,C2) = Q(Ĉ1, Ĉ2).

Example 3
M(u, v) = min(u, v), W (u, v) = max(u + v − 1, 0), Π(u, v) = uv .
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Kendall’s τ for a copula

Theorem 4
Let X and Y be continuous random variables whose copula is C. Then the population
version of Kendall’s τ for X and Y is given by

τX ,Y = τC = Q(C,C) = 4
∫

I2
C(u, v)dC(u, v)− 1.

Note that τC = 4E(C(U,V ))− 1, where U,V ∼ Unif [0, 1] with (U,V ) ∼ C.

Theorem 5 (Li et al. 2002)
Let C1 and C2 be copulas. Then∫

I2
C1(u, v)dC2(u, v) =

1
2
−
∫

I2

∂C1(u, v)

∂u
∂C2(u, v)

∂v
dudv .
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Examples

I The Farlie-Gumbel-Morgernstern family: Cθ(u, v) = uv + θuv(1− u)(1− v),
where θ is in [–1, 1]. We have

dCθ(u, v) = (1 + θ(1− 2u)(1− 2v))dudv .

Then ∫
I2

Cθ(u, v)dCθ(u, v) =
1
4

+
θ

18

and τC = 2θ/9 ∈ [−2/9, 2/9].

I The Fréchet family: Cα,β = αM + (1− α− β)Π + βW , where
α, β ≥ 0, α+ β ≤ 1. Then

dCα,β = αdM + (1− α− β)dΠ + βdW

and

τC =
(α− β)(α+ β + 2)

2
.
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I The Fréchet family: Cα,β = αM + (1− α− β)Π + βW , where
α, β ≥ 0, α+ β ≤ 1. Then

dCα,β = αdM + (1− α− β)dΠ + βdW

and

τC =
(α− β)(α+ β + 2)

2
.



Seite 8 Concordance and Dependence | V. Makogin | February 4, 2021

Examples

I The Farlie-Gumbel-Morgernstern family: Cθ(u, v) = uv + θuv(1− u)(1− v),
where θ is in [–1, 1]. We have

dCθ(u, v) = (1 + θ(1− 2u)(1− 2v))dudv .

Then ∫
I2

Cθ(u, v)dCθ(u, v) =
1
4

+
θ

18

and τC = 2θ/9 ∈ [−2/9, 2/9].
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Archimedean copulas
C(u, v) = ϕ(−1)(ϕ(u) + ϕ(v)), where ϕ is a continuous, strictly decreasing, convex
function.

Corollary 6 (Genest and MacKay 1986)
Let X and Y be random variables with an Archimedean copula C generated by ϕ in
Ω. The population version τC of Kendall’s τ for X and Y is given by

τC = 1 + 4
∫ 1

0

ϕ(t)
ϕ′(t)

dt .

Proof: Let U and V be uniform(0,1) distributed random variables with joint distribution
function C, and let KC denote the distribution function of C(U,V ). Then

τC = 4E(C(U,V ))− 1 = 4
∫ 1

0
tdKC(t)− 1 = 3− 4

∫ 1

0
KC(t)dt .

KC(t) is the C−measure of the set {(u, v) ∈ I2 : C(u, v) ≤ t}, or, equivalently, of the
set {(u, v) ∈ I2 : ϕ(u) + ϕ(v) ≥ ϕ(t)},
We know that KC(t) = t − ϕ(t)/ϕ′(t+), hence

τC = 3− 4
∫ 1

0

(
t −

ϕ(t)
ϕ′(t+)

)
dt = 1 + 4

∫ 1

0

ϕ(t)
ϕ′(t)

dt .
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Examples

τC = 1 + 4
∫ 1

0

ϕ(t)
ϕ′(t)

dt .

I The Clayton family: φ(t) = (t−θ − 1)/θ, θ > –1, θ 6= 0, then

ϕ(t)
ϕ′(t)

=
(t−θ − 1)

−θt−θ−1
=

tθ+1 − t
θ

and τC = 1 +
4
θ

∫ 1

0
(tθ+1 − t)dt =

θ

θ + 2
.

I The Gumbel-Hougaard family: φ(t) = (− log t)θ, θ > 1, then

ϕ(t)
ϕ′(t)

= −
(− log t)θ

θ(− log t)θ−1(1/t)
=

t log t
θ

and τC = 1+4
∫ 1

0

t log t
θ

dt =
θ − 1
θ

.
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Spearman’s ρ

Theorem 7
Let X and Y be continuous random variables whose copula is C. Then the population
version of Spearman’s ρ for X and Y is given by

ρX ,Y = ρC = 3Q(C,Π) = 12
∫

I2
uvdC(u, v)− 3 = 12

∫
I2

C(u, v)dudv − 3.

Spearman’s rho is often called the “grade” correlation coefficient. Grades are the
population analogs of ranks, that is, if x and y are observations from two random
variables X and Y with distribution functions F and G, respectively, then the grades of
x and y are given by u = F (x) and v = G(y).
Note that the grades (u and v ) are observations from the uniform (0,1) random
variables U = F (X) and V = G(Y ) whose joint distribution function is C.
The coefficient “3” is a “normalization” constant, because Q(C,Π) ∈ [−1/3, 1/3].
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Analogue with correlation

Let U = F (X) and V = G(Y ), then

ρX ,Y = ρC = 12
∫

I2
uvdC(u, v)− 3 = 12E(UV )− 3

=
E(UV )− 1/4

1/12
=

E(UV )− E(U)E(V ))√
Var(U)

√
Var(V )

= Corr(U,V ).

I Spearman’s ρ for a pair of continuous random variables X and Y is identical to
Pearson’s product-moment correlation coefficient for the grades of X and Y .

I From ρC = 12
∫

I2 [C(u, v)− uv ]dudv we have that ρC is proportional to the
signed volume between the graphs of the copula C and the product copula Π.

I Thus ρC is a measure of “average distance” between the distribution of X and Y
(as represented by C) and independence (as represented by the copula Π).
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signed volume between the graphs of the copula C and the product copula Π.

I Thus ρC is a measure of “average distance” between the distribution of X and Y
(as represented by C) and independence (as represented by the copula Π).
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Examples

I Farlie-Gumbel-Morgernstern family: Cθ(u, v) = uv + θuv(1− u)(1− v), where
θ is in [–1, 1]. Then τC = 2θ/9 ∈ [−2/9, 2/9]. Compute

ρC = 12
∫

I2
[uv + θuv(1− u)(1− v)] dudv − 3

= 12

(
1
2

1
2

+ θ

(∫ 1

0
u(1− u)du

)2)
− 3 =

θ

3
.

I Fréchet family: Cα,β = αM + (1− α− β)Π + βW , where α, β ≥ 0, α+ β ≤ 1.
Then

ρC = 3αQ(M,Π) + 3(1− α− β)Q(Π,Π) + 3βQ(W ,Π) = α− β.
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Copula of (X ,X 2)
Let X ∼ N(0, 1) and Y = X 2.

I Margin F : F (x) = P(X ≤ x) = Φ(x) =
∫ x
−∞

−y2/2√
2π

dy .

I Margin G : G(y) = P(Y ≤ y) = P(X 2 ≤ y). Then G(y) = 0 for y ≤ 0 and for
y ≥ 0 :

G(y) = P(|X | ≤
√

y) = Φ(
√

y)− Φ(−
√

y) = 2Φ(
√

y)− 1 = 1− 2Φ(−
√

y).

I Common distribution function: Let y ≥ 0.

H(x , y) = P(X ≤ x ,Y ≤ y) = P(X ≤ x , |X | ≤
√

y)

= Φ(x ∧
√

y)− Φ(x ∧ (−
√

y)) = Φ(x) ∧ Φ(
√

y)− Φ(x) ∧ Φ(−
√

y).

I Copula:

H(x , y) = F (x) ∧
1 + G(y)

2
− F (x) ∧

1− G(y)

2
, x , y ∈ R2.

and C(u, v) = u ∧ 1+v
2 − u ∧ 1−v

2 , u, v ∈ I2.
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Spearman’s ρ for X and X 2

C(u, v) = u ∧ 1+v
2 − u ∧ 1−v

2 , u, v ∈ I2. Then

ρC = 12
∫

I2
C(u, v)dudv − 3 = 12

∫
I2

u ∧
1 + v

2
dudv − 12

∫
I2

u ∧
1− v

2
dudv − 3.

Let Y = −X 2.
I Margin G : G(y) = P(Y ≤ y) = P(−X 2 ≤ y). Then G(y) = 1 for y ≥ 0 and let

y− = −min(y , 0).

G(y) = P(|X | ≥
√

y−) = 2Φ(−
√

y−).

I Common distribution function: Let y ≥ 0.

H(x , y) = P(X ≤ x ,Y ≤ y) = P(X ≤ x , |X | ≥
√

y−)

= Φ(x ∧ (−
√

y−)) + Φ(x ∨
√

y−)− Φ(
√

y−)

= F (x) ∧
G(y)

2
+

(
1−

G(y)

2

)
∨ F (x)− 1 +

G(y)

2
− Φ(

√
y−).

I Copula: C(u, v) = u ∧ v
2 + u ∨ (1− v/2)− 1 + v

2 , u, v ∈ I2.
I Spearman’s ρ:

ρC = 12
∫

I2
C(u, v)dudv−3 = 12

∫
I2

(
u ∧

v
2

+ u ∨ (1− v/2)− 1 +
v
2

)
dudv−3 = 0.
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Hoeffding’s lemma 1940

Let X and Y be random variables with joint distribution function H and margins F and
G, such that E(|X |), E(Y ), and E(|XY |) are all finite. Then

Cov(X ,Y ) =

∫
R2

[H(x , y)− F (x)G(y)]dxdy .

Moreover,

Cov(X ,Y ) =

∫
R2

[C(F (x),G(y))− F (x)G(y)]dxdy

=

∫
I2

[C(u, v)− uv ]dF−1(u)dG−1(v).
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Measures of dependence

I Schweizer and Wolff’s σ is given by

σX ,Y =

∫
I2
|C(u, v)− uv |dudv

I For any p, 1 ≥ p <∞, the Lp distance between C and Π is given by(
kp

∫
I2
|C(u, v)− uv |p dudv

)1/p
,

where kp is a constant chosen so that the quantity is 1 when C = M or W
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