

Concordance and Dependence Properties

Concordance

Motivation example: Let X be a symmetric random variable. Then X and $Y=X^{2}$ are obviously dependent. What about correlation?

$$
\operatorname{Corr}(X, Y)=\mathbf{E}\left(X X^{2}\right)-\mathbf{E} X^{2} \mathbf{E} X=0-0=0
$$

- Informally, a pair of random variables are concordant if "large" values of one tend to be associated with "large" values of the other and "small" values of one with "smali" values of the other.
- Formally, let $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ denote two observations from a vector (X, Y). We say that $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are concordant if $x_{i}<x_{j}$ and $y_{i}<y_{j}$, or if $x_{i}>x_{j}$ and $y_{i}>y_{j}$. We say that $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are discordant if $x_{i}<x_{j}$ and $y_{i}>y_{j}$ or if $x_{i}>x_{j}$ and $y_{i}<y_{j}$
- The alternate formulation: $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are concordant if $\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)>0$ and discordant if $\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)<0$.

Concordance

Motivation example: Let X be a symmetric random variable. Then X and $Y=X^{2}$ are obviously dependent. What about correlation?

$$
\operatorname{Corr}(X, Y)=\mathbf{E}\left(X X^{2}\right)-\mathbf{E} X^{2} \mathbf{E} X=0-0=0
$$

- Informally, a pair of random variables are concordant if "large" values of one tend to be associated with "large" values of the other and "small" values of one with "small" values of the other.
- Formally, let $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ denote two observations from a vector (X, Y). We say that $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are concordant if $x_{i}<x_{j}$ and $y_{i}<y_{j}$, or if $x_{i}>x_{j}$ and $y_{i}>y_{j}$. We say that $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are discordant if $x_{i}<x_{j}$ and $y_{i}>y_{j}$ or if $x_{i}>x_{j}$ and $y_{i}<y_{j}$
- The alternate formulation: $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are concordant if $\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)>0$ and discordant if $\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)<0$.

Concordance

Motivation example: Let X be a symmetric random variable. Then X and $Y=X^{2}$ are obviously dependent. What about correlation?

$$
\operatorname{Corr}(X, Y)=\mathbf{E}\left(X X^{2}\right)-\mathbf{E} X^{2} \mathbf{E} X=0-0=0
$$

- Informally, a pair of random variables are concordant if "large" values of one tend to be associated with "large" values of the other and "small" values of one with "small" values of the other.

Concordance

Motivation example: Let X be a symmetric random variable. Then X and $Y=X^{2}$ are obviously dependent. What about correlation?

$$
\operatorname{Corr}(X, Y)=\mathbf{E}\left(X X^{2}\right)-\mathbf{E} X^{2} \mathbf{E} X=0-0=0
$$

- Informally, a pair of random variables are concordant if "large" values of one tend to be associated with "large" values of the other and "small" values of one with "small" values of the other.
- Formally, let $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ denote two observations from a vector (X, Y).

Concordance

Motivation example: Let X be a symmetric random variable. Then X and $Y=X^{2}$ are obviously dependent. What about correlation?

$$
\operatorname{Corr}(X, Y)=\mathbf{E}\left(X X^{2}\right)-\mathbf{E} X^{2} \mathbf{E} X=0-0=0
$$

- Informally, a pair of random variables are concordant if "large" values of one tend to be associated with "large" values of the other and "small" values of one with "small" values of the other.
- Formally, let $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ denote two observations from a vector (X, Y). We say that $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are concordant if $x_{i}<x_{j}$ and $y_{i}<y_{j}$, or if $x_{i}>x_{j}$ and $y_{i}>y_{j}$.
$\begin{aligned}- & \text { The alternate formulation: }\left(x_{i}, y_{i}\right) \text { and }\left(x_{j}, y_{j}\right) \text { are concordant if } \\ & \left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)>0 \text { and discordant if }\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)<0 \text {. }\end{aligned}$

Concordance

Motivation example: Let X be a symmetric random variable. Then X and $Y=X^{2}$ are obviously dependent. What about correlation?

$$
\operatorname{Corr}(X, Y)=\mathbf{E}\left(X X^{2}\right)-\mathbf{E} X^{2} \mathbf{E} X=0-0=0
$$

- Informally, a pair of random variables are concordant if "large" values of one tend to be associated with "large" values of the other and "small" values of one with "small" values of the other.
\Rightarrow Formally, let $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ denote two observations from a vector (X, Y). We say that $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are concordant if $x_{i}<x_{j}$ and $y_{i}<y_{j}$, or if $x_{i}>x_{j}$ and $y_{i}>y_{j}$. We say that (x_{i}, y_{i}) and $\left(x_{j}, y_{j}\right)$ are discordant if $x_{i}<x_{j}$ and $y_{i}>y_{j}$ or if $x_{i}>x_{j}$ and $y_{i}<y_{j}$.
\rightarrow The alternate formulation: $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are concordant if $\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)>0$ and discordant if $\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)<0$.

Concordance

Motivation example: Let X be a symmetric random variable. Then X and $Y=X^{2}$ are obviously dependent. What about correlation?

$$
\operatorname{Corr}(X, Y)=\mathbf{E}\left(X X^{2}\right)-\mathbf{E} X^{2} \mathbf{E} X=0-0=0
$$

- Informally, a pair of random variables are concordant if "large" values of one tend to be associated with "large" values of the other and "small" values of one with "small" values of the other.
\Rightarrow Formally, let $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ denote two observations from a vector (X, Y). We say that $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are concordant if $x_{i}<x_{j}$ and $y_{i}<y_{j}$, or if $x_{i}>x_{j}$ and $y_{i}>y_{j}$. We say that (x_{i}, y_{i}) and $\left(x_{j}, y_{j}\right)$ are discordant if $x_{i}<x_{j}$ and $y_{i}>y_{j}$ or if $x_{i}>x_{j}$ and $y_{i}<y_{j}$.
- The alternate formulation: $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are concordant if $\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)>0$ and discordant if $\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)<0$.

Kendall's τ

- Let $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ denote a random sample of n observations from a vector (X, Y) of continuous random variables.
- Each distinct pair is either concordant or discordant. Let c denote the number of concordant pairs and d the number of discordant pairs. Then Kendall's τ for the sample is defined as

\rightarrow Let $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be i.i.d. random vectors, each with joint distribution function H. Then the population version of Kendall's τ is defined as the probability of concordance minus the probability of discordance:

$$
\tau=\tau_{X, Y}=\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]-\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)<0\right] .
$$

Kendall's τ

\rightarrow Let $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ denote a random sample of n observations from a vector (X, Y) of continuous random variables.

- Each distinct pair is either concordant or discordant. Let c denote the number of concordant pairs and d the number of discordant pairs. Then Kendall's τ for the sample is defined as

$$
t=\frac{c-d}{c+d}=\frac{c-d}{\binom{n}{2}} .
$$

Let $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be i.i.d. random vectors, each with joint distribution
function H. Then the population version of Kendall's τ is defined as the
probability of concordance minus the probability of discordance:

Kendall's τ

- Let $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ denote a random sample of n observations from a vector (X, Y) of continuous random variables.
- Each distinct pair is either concordant or discordant. Let c denote the number of concordant pairs and d the number of discordant pairs. Then Kendall's τ for the sample is defined as

$$
t=\frac{c-d}{c+d}=\frac{c-d}{\binom{n}{2}}
$$

- Let $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be i.i.d. random vectors, each with joint distribution function H. Then the population version of Kendall's τ is defined as the probability of concordance minus the probability of discordance:

$$
\tau=\tau_{X, Y}=\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]-\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)<0\right]
$$

Theorem 1

Let $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be independent vectors of continuous random variables with joint distribution functions H_{1} and H_{2}, respectively, with common margins F (of X_{1} and X_{2}) and G (of Y_{1} and Y_{2}). Let C_{1} and C_{2} denote the copulas of $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$, respectively, so that $H_{1}(x, y)=C_{1}(F(x), G(y))$ and $H_{2}(x, y)=C_{2}(F(x), G(y))$. Let Q denote the difference between the probabilities of concordance and discordance of $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$, i.e., let

$$
Q=\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]-\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)<0\right] .
$$

Then

$$
Q=Q\left(C_{1}, C_{2}\right)=4 \int_{1^{2}} C_{2}(u, v) d C_{1}(u, v)-1
$$

Proof: The random variables are continuous:

Theorem 1

Let $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be independent vectors of continuous random variables with joint distribution functions H_{1} and H_{2}, respectively, with common margins F (of X_{1} and X_{2}) and G (of Y_{1} and Y_{2}). Let C_{1} and C_{2} denote the copulas of $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$, respectively, so that $H_{1}(x, y)=C_{1}(F(x), G(y))$ and $H_{2}(x, y)=C_{2}(F(x), G(y))$. Let Q denote the difference between the probabilities of concordance and discordance of $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$, i.e., let

$$
Q=\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]-\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)<0\right] .
$$

Then

$$
Q=Q\left(C_{1}, C_{2}\right)=4 \int_{1^{2}} C_{2}(u, v) d C_{1}(u, v)-1
$$

Proof: The random variables are continuous:
$\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)<0\right]=1-\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]$ and hence $Q=2 \mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]-1$.

Theorem 1

Let $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be independent vectors of continuous random variables with joint distribution functions H_{1} and H_{2}, respectively, with common margins F (of X_{1} and X_{2}) and G (of Y_{1} and Y_{2}). Let C_{1} and C_{2} denote the copulas of $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$, respectively, so that $H_{1}(x, y)=C_{1}(F(x), G(y))$ and $H_{2}(x, y)=C_{2}(F(x), G(y))$. Let Q denote the difference between the probabilities of concordance and discordance of $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$, i.e., let

$$
Q=\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]-\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)<0\right] .
$$

Then

$$
Q=Q\left(C_{1}, C_{2}\right)=4 \int_{1^{2}} C_{2}(u, v) d C_{1}(u, v)-1
$$

Proof: The random variables are continuous:
$\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)<0\right]=1-\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]$ and hence $Q=2 \mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]-1$.

$$
\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]=\mathbf{P}\left[X_{1}>X_{2}, Y_{1}>Y_{2}\right]+\mathbf{P}\left[X_{1}<X_{2}, Y_{1}<Y_{2}\right]
$$

$$
\begin{aligned}
& \mathbf{P}\left[X_{1}>X_{2}, Y_{1}>Y_{2}\right]=\mathbf{P}\left[X_{2}<X_{1}, Y_{2}<Y_{1}\right]=\int_{\mathbb{R}^{2}} \mathbf{P}\left[X_{2}<x, Y_{2}<y\right] d H_{1}(x, y) \\
& =\int_{\mathbb{R}^{2}} C_{2}(F(x), G(y)) d C_{1}(F(x), G(y))=\int_{R^{2}} C_{2}(u, v) d C_{1}(u, v)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathbf{P}\left[X_{1}<X_{2}, Y_{1}<Y_{2}\right]=\int_{\mathbb{R}^{2}} \mathbf{P}\left[X_{2}>x, Y_{2}>y\right] d H_{1}(x, y) \\
& =\int_{\mathbb{R}^{2}}\left[1-F(x)-F(y)+C_{2}(F(x), G(y))\right] d C_{1}(F(x), G(y)) \\
& =\int_{R^{2}}\left(1-u-v+C_{2}(u, v)\right) d C_{1}(u, v)=\int_{R^{2}} C_{2}(u, v) d C_{1}(u, v) .
\end{aligned}
$$

Thus, $\mathrm{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]=2 \int_{R^{2}} C_{2}(u, v) d C_{1}(u, v)$ and

$$
Q=Q\left(C_{1}, C_{2}\right)=4 \int_{R} C_{2}(u, v) d C_{1}(u, v)-1 .
$$

$$
\begin{aligned}
& \mathbf{P}\left[X_{1}>X_{2}, Y_{1}>Y_{2}\right]=\mathbf{P}\left[X_{2}<X_{1}, Y_{2}<Y_{1}\right]=\int_{\mathbb{R}^{2}} \mathbf{P}\left[X_{2}<x, Y_{2}<y\right] d H_{1}(x, y) \\
& =\int_{\mathbb{R}^{2}} C_{2}(F(x), G(y)) d C_{1}(F(x), G(y))=\int_{R^{2}} C_{2}(u, v) d C_{1}(u, v)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathbf{P}\left[X_{1}<X_{2}, Y_{1}<Y_{2}\right]=\int_{\mathbb{R}^{2}} \mathbf{P}\left[X_{2}>x, Y_{2}>y\right] d H_{1}(x, y) \\
& =\int_{\mathbb{R}^{2}}\left[1-F(x)-F(y)+C_{2}(F(x), G(y))\right] d C_{1}(F(x), G(y)) \\
& =\int_{R^{2}}\left(1-u-v+C_{2}(u, v)\right) d C_{1}(u, v)=\int_{R^{2}} C_{2}(u, v) d C_{1}(u, v) .
\end{aligned}
$$

Thus, $\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]=2 \int_{R^{2}} C_{2}(u, v) d C_{1}(u, v)$ and

$$
\begin{aligned}
& \mathbf{P}\left[X_{1}>X_{2}, Y_{1}>Y_{2}\right]=\mathbf{P}\left[X_{2}<X_{1}, Y_{2}<Y_{1}\right]=\int_{\mathbb{R}^{2}} \mathbf{P}\left[X_{2}<x, Y_{2}<y\right] d H_{1}(x, y) \\
& =\int_{\mathbb{R}^{2}} C_{2}(F(x), G(y)) d C_{1}(F(x), G(y))=\int_{1^{2}} C_{2}(u, v) d C_{1}(u, v)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathbf{P}\left[X_{1}<X_{2}, Y_{1}<Y_{2}\right]=\int_{\mathbb{R}^{2}} \mathbf{P}\left[X_{2}>x, Y_{2}>y\right] d H_{1}(x, y) \\
& =\int_{\mathbb{R}^{2}}\left[1-F(x)-F(y)+C_{2}(F(x), G(y))\right] d C_{1}(F(x), G(y)) \\
& =\int_{R}\left(1-u-v+C_{2}(u, v)\right) d C_{1}(u, v)=\int_{R} C_{2}(u, v) d C_{1}(u, v) .
\end{aligned}
$$

Thus, $\mathrm{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]=2 \int_{R^{2}} C_{2}(u, v) d C_{1}(u, v)$ and

$$
\begin{aligned}
& \mathbf{P}\left[X_{1}>X_{2}, Y_{1}>Y_{2}\right]=\mathbf{P}\left[X_{2}<X_{1}, Y_{2}<Y_{1}\right]=\int_{\mathbb{R}^{2}} \mathbf{P}\left[X_{2}<x, Y_{2}<y\right] d H_{1}(x, y) \\
& =\int_{\mathbb{R}^{2}} C_{2}(F(x), G(y)) d C_{1}(F(x), G(y))=\int_{1^{2}} C_{2}(u, v) d C_{1}(u, v)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathbf{P}\left[X_{1}<X_{2}, Y_{1}<Y_{2}\right]=\int_{\mathbb{R}^{2}} \mathbf{P}\left[X_{2}>x, Y_{2}>y\right] d H_{1}(x, y) \\
& =\int_{\mathbb{R}^{2}}\left[1-F(x)-F(y)+C_{2}(F(x), G(y))\right] d C_{1}(F(x), G(y)) \\
& =\int_{R}\left(1-u-v+C_{2}(u, v)\right) d C_{1}(u, v)=\int_{R} C_{2}(u, v) d C_{1}(u, v) .
\end{aligned}
$$

Thus, $\mathrm{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]=2 \int_{R^{2}} C_{2}(u, v) d C_{1}(u, v)$ and

$$
\begin{aligned}
& \mathbf{P}\left[X_{1}>X_{2}, Y_{1}>Y_{2}\right]=\mathbf{P}\left[X_{2}<X_{1}, Y_{2}<Y_{1}\right]=\int_{\mathbb{R}^{2}} \mathbf{P}\left[X_{2}<x, Y_{2}<y\right] d H_{1}(x, y) \\
& =\int_{\mathbb{R}^{2}} C_{2}(F(x), G(y)) d C_{1}(F(x), G(y))=\int_{1^{2}} C_{2}(u, v) d C_{1}(u, v)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathbf{P}\left[X_{1}<X_{2}, Y_{1}<Y_{2}\right]=\int_{\mathbb{R}^{2}} \mathbf{P}\left[X_{2}>x, Y_{2}>y\right] d H_{1}(x, y) \\
& =\int_{\mathbb{R}^{2}}\left[1-F(x)-F(y)+C_{2}(F(x), G(y))\right] d C_{1}(F(x), G(y)) \\
& =\int_{R^{2}}\left(1-u-v+C_{2}(u, v)\right) d C_{1}(u, v)=\int_{1^{2}} C_{2}(u, v) d C_{1}(u, v) .
\end{aligned}
$$

Thus, $\mathbf{P}\left[\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)>0\right]=2 \int_{1^{2}} C_{2}(u, v) d C_{1}(u, v)$ and

$$
Q=Q\left(C_{1}, C_{2}\right)=4 \int_{1^{2}} C_{2}(u, v) d C_{1}(u, v)-1
$$

Corollary 2

Let C_{1}, C_{2}, and Q be as given in Theorem 1. Then

1. Q is symmetric in its arguments: $Q\left(C_{1}, C_{2}\right)=Q\left(C_{2}, C_{1}\right)$.
2. Q is non-decreasing in each argument: if $C_{1}<C_{1}^{\prime}$ and $C_{2}<C_{2}^{\prime}$ for all $(u, v) \in I^{2}$, then $Q\left(C_{1}, C_{2}\right) \leq Q\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$.
3. Copulas can be replaced by survival copulas in Q, i.e., $Q\left(C_{1}, C_{2}\right)=Q\left(\hat{C}_{1}, \hat{C}_{2}\right)$.

Example 3
$M(u, v)=\min (u, v), W(u, v)=\max (u+v-1,0), \Pi(u, v)=u v$.

Let C be an arbitrary copula, then
$Q(W, C) \in[-1,0], \quad Q(\Pi, C) \in[-1 / 3,-1 / 3], \quad Q(M, C) \in[0,1]$.

Corollary 2

Let C_{1}, C_{2}, and Q be as given in Theorem 1. Then

1. Q is symmetric in its arguments: $Q\left(C_{1}, C_{2}\right)=Q\left(C_{2}, C_{1}\right)$.
2. Q is non-decreasing in each argument: if $C_{1}<C_{1}^{\prime}$ and $C_{2}<C_{2}^{\prime}$ for all $(u, v) \in I^{2}$, then $Q\left(C_{1}, C_{2}\right) \leq Q\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$.
3. Copulas can be replaced by survival copulas in Q, i.e., $Q\left(C_{1}, C_{2}\right)=Q\left(\hat{C}_{1}, \hat{C}_{2}\right)$,

Example 3
$M(u, v)=\min (u, v), W(u, v)=\max (u+v-1,0), \Pi(u, v)=u v$.

Let C be an arbitrary copula, then
$Q(W, C) \in[-1,0], \quad Q(\Pi, C) \in[-1 / 3,-1 / 3], \quad Q(M, C) \in[0,1]$.

Corollary 2

Let C_{1}, C_{2}, and Q be as given in Theorem 1. Then

1. Q is symmetric in its arguments: $Q\left(C_{1}, C_{2}\right)=Q\left(C_{2}, C_{1}\right)$.
2. Q is non-decreasing in each argument: if $C_{1}<C_{1}^{\prime}$ and $C_{2}<C_{2}^{\prime}$ for all $(u, v) \in I^{2}$, then $Q\left(C_{1}, C_{2}\right) \leq Q\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$.
3. Copulas can be replaced by survival copulas in Q, i.e., $Q\left(C_{1}, C_{2}\right)=Q\left(\hat{C}_{1}, \hat{C}_{2}\right)$.

Example 3
$M(u, v)=\min (u, v), W(u, v)=\max (u+v-1,0), \Pi(u, v)=u v$.

Let C be an arbitrary copula, then
$Q(W, C) \in[-1,0], \quad Q(\Pi, C) \in[-1 / 3,-1 / 3], \quad Q(M, C) \in[0,1]$.

Corollary 2

Let C_{1}, C_{2}, and Q be as given in Theorem 1. Then

1. Q is symmetric in its arguments: $Q\left(C_{1}, C_{2}\right)=Q\left(C_{2}, C_{1}\right)$.
2. Q is non-decreasing in each argument: if $C_{1}<C_{1}^{\prime}$ and $C_{2}<C_{2}^{\prime}$ for all $(u, v) \in I^{2}$, then $Q\left(C_{1}, C_{2}\right) \leq Q\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$.
3. Copulas can be replaced by survival copulas in Q, i.e., $Q\left(C_{1}, C_{2}\right)=Q\left(\hat{C}_{1}, \hat{C}_{2}\right)$.

Example 3

$M(u, v)=\min (u, v), W(u, v)=\max (u+v-1,0), \Pi(u, v)=u v$.

Corollary 2

Let C_{1}, C_{2}, and Q be as given in Theorem 1. Then

1. Q is symmetric in its arguments: $Q\left(C_{1}, C_{2}\right)=Q\left(C_{2}, C_{1}\right)$.
2. Q is non-decreasing in each argument: if $C_{1}<C_{1}^{\prime}$ and $C_{2}<C_{2}^{\prime}$ for all $(u, v) \in I^{2}$, then $Q\left(C_{1}, C_{2}\right) \leq Q\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$.
3. Copulas can be replaced by survival copulas in Q, i.e., $Q\left(C_{1}, C_{2}\right)=Q\left(\hat{C}_{1}, \hat{C}_{2}\right)$.

Example 3

$M(u, v)=\min (u, v), W(u, v)=\max (u+v-1,0), \Pi(u, v)=u v$.

$$
\begin{array}{lll}
Q(W, W)=-1, & Q(W, \Pi)=-1 / 3, & Q(W, M)=0 \\
Q(\Pi, W)=-1 / 3, & Q(\Pi, \Pi)=0, & Q(\Pi, M)=1 / 3 \\
Q(M, W)=0, & Q(M, \Pi)=1 / 3, & Q(M, M)=1
\end{array}
$$

Corollary 2

Let C_{1}, C_{2}, and Q be as given in Theorem 1. Then

1. Q is symmetric in its arguments: $Q\left(C_{1}, C_{2}\right)=Q\left(C_{2}, C_{1}\right)$.
2. Q is non-decreasing in each argument: if $C_{1}<C_{1}^{\prime}$ and $C_{2}<C_{2}^{\prime}$ for all $(u, v) \in I^{2}$, then $Q\left(C_{1}, C_{2}\right) \leq Q\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$.
3. Copulas can be replaced by survival copulas in Q, i.e., $Q\left(C_{1}, C_{2}\right)=Q\left(\hat{C}_{1}, \hat{C}_{2}\right)$.

Example 3

$M(u, v)=\min (u, v), W(u, v)=\max (u+v-1,0), \Pi(u, v)=u v$.

$$
\begin{array}{lll}
Q(W, W)=-1, & Q(W, \Pi)=-1 / 3, & Q(W, M)=0 \\
Q(\Pi, W)=-1 / 3, & Q(\Pi, \Pi)=0, & Q(\Pi, M)=1 / 3 \\
Q(M, W)=0, & Q(M, \Pi)=1 / 3, & Q(M, M)=1
\end{array}
$$

Let C be an arbitrary copula, then
$Q(W, C) \in[-1,0], \quad Q(\Pi, C) \in[-1 / 3,-1 / 3], \quad Q(M, C) \in[0,1]$.

Kendall's τ for a copula

Theorem 4

Let X and Y be continuous random variables whose copula is C. Then the population version of Kendall's τ for X and Y is given by

$$
\tau_{X, Y}=\tau_{C}=Q(C, C)=4 \int_{1^{2}} C(u, v) d C(u, v)-1
$$

Note that $\tau_{C}=4 \mathbf{E}(C(U, V))-1$, where $U, V \sim \operatorname{Unif}[0,1]$ with $(U, V) \sim C$.
Theorem 5 (Li et al. 2002)
Let C_{1} and C_{2} be copulas. Then

Kendall's τ for a copula

Theorem 4

Let X and Y be continuous random variables whose copula is C. Then the population version of Kendall's τ for X and Y is given by

$$
\tau_{X, Y}=\tau_{C}=Q(C, C)=4 \int_{1^{2}} C(u, v) d C(u, v)-1
$$

Note that $\tau_{C}=4 \mathrm{E}(C(U, V))-1$, where $U, V \sim \operatorname{Unif}[0,1]$ with $(U, V) \sim C$.
Theorem 5 (Li et al. 2002)
Let C_{1} and C_{2} be copulas. Then

$$
\int_{1^{2}} C_{1}(u, v) d C_{2}(u, v)=\frac{1}{2}-\int_{1^{2}} \frac{\partial C_{1}(u, v)}{\partial u} \frac{\partial C_{2}(u, v)}{\partial v} d u d v .
$$

Examples

- The Farlie-Gumbel-Morgernstern family: $C_{\theta}(u, v)=u v+\theta u v(1-u)(1-v)$, where θ is in $[-1,1]$. We have

$$
d C_{\theta}(u, v)=(1+\theta(1-2 u)(1-2 v)) d u d v .
$$

Then

$$
\int_{R^{2}} C_{\theta}(u, v) d C_{\theta}(u, v)=\frac{1}{4}+\frac{\theta}{18}
$$

and $\tau_{C}=2 \theta / 9 \in[-2 / 9,2 / 9]$.

- The Fréchet family: $\boldsymbol{C}_{\alpha, \beta}=\alpha M+(1-\alpha-\beta) \Pi+\beta W$, where $\alpha, \beta \geq 0, \alpha+\beta \leq 1$. Then

$$
d C_{\alpha, \beta}=\alpha d M+(1-\alpha-\beta) d \Pi+\beta d W
$$

Examples

- The Farlie-Gumbel-Morgernstern family: $C_{\theta}(u, v)=u v+\theta u v(1-u)(1-v)$, where θ is in $[-1,1]$. We have

$$
d C_{\theta}(u, v)=(1+\theta(1-2 u)(1-2 v)) d u d v
$$

Then

$$
\int_{R^{2}} C_{\theta}(u, v) d C_{\theta}(u, v)=\frac{1}{4}+\frac{\theta}{18}
$$

and $\tau_{C}=2 \theta / 9 \in[-2 / 9,2 / 9]$.

- The Fréchet family: $\boldsymbol{C}_{\alpha, \beta}=\alpha M+(1-\alpha-\beta) \Pi+\beta W$, where $\alpha, \beta \geq 0, \alpha+\beta \leq 1$. Then

$$
d C_{\alpha, \beta}=\alpha d M+(1-\alpha-\beta) d \Pi+\beta d W
$$

Examples

- The Farlie-Gumbel-Morgernstern family: $C_{\theta}(u, v)=u v+\theta u v(1-u)(1-v)$, where θ is in $[-1,1]$. We have

$$
d C_{\theta}(u, v)=(1+\theta(1-2 u)(1-2 v)) d u d v
$$

Then

$$
\int_{1^{2}} C_{\theta}(u, v) d C_{\theta}(u, v)=\frac{1}{4}+\frac{\theta}{18}
$$

and $\tau_{C}=2 \theta / 9 \in[-2 / 9,2 / 9]$.

- The Fréchet family: $\boldsymbol{C}_{\alpha, \beta}=\alpha M+(1-\alpha-\beta) \Pi+\beta W$, where $\alpha, \beta \geq 0, \alpha+\beta \leq 1$. Then

$$
d C_{\alpha, \beta}=\alpha d M+(1-\alpha-\beta) d \Pi+\beta d W
$$

Examples

- The Farlie-Gumbel-Morgernstern family: $C_{\theta}(u, v)=u v+\theta u v(1-u)(1-v)$, where θ is in $[-1,1]$. We have

$$
d C_{\theta}(u, v)=(1+\theta(1-2 u)(1-2 v)) d u d v
$$

Then

$$
\int_{1^{2}} C_{\theta}(u, v) d C_{\theta}(u, v)=\frac{1}{4}+\frac{\theta}{18}
$$

and $\tau_{C}=2 \theta / 9 \in[-2 / 9,2 / 9]$.

- The Fréchet family: $\boldsymbol{C}_{\alpha, \beta}=\alpha M+(1-\alpha-\beta) \Pi+\beta W$, where $\alpha, \beta \geq 0, \alpha+\beta \leq 1$. Then

Examples

- The Farlie-Gumbel-Morgernstern family: $C_{\theta}(u, v)=u v+\theta u v(1-u)(1-v)$, where θ is in $[-1,1]$. We have

$$
d C_{\theta}(u, v)=(1+\theta(1-2 u)(1-2 v)) d u d v
$$

Then

$$
\int_{1^{2}} C_{\theta}(u, v) d C_{\theta}(u, v)=\frac{1}{4}+\frac{\theta}{18}
$$

and $\tau_{C}=2 \theta / 9 \in[-2 / 9,2 / 9]$.

- The Fréchet family: $\boldsymbol{C}_{\alpha, \beta}=\alpha M+(1-\alpha-\beta) \Pi+\beta W$, where $\alpha, \beta \geq 0, \alpha+\beta \leq 1$. Then

$$
d C_{\alpha, \beta}=\alpha d M+(1-\alpha-\beta) d \Pi+\beta d W
$$

Examples

- The Farlie-Gumbel-Morgernstern family: $C_{\theta}(u, v)=u v+\theta u v(1-u)(1-v)$, where θ is in $[-1,1]$. We have

$$
d C_{\theta}(u, v)=(1+\theta(1-2 u)(1-2 v)) d u d v
$$

Then

$$
\int_{1^{2}} C_{\theta}(u, v) d C_{\theta}(u, v)=\frac{1}{4}+\frac{\theta}{18}
$$

and $\tau_{C}=2 \theta / 9 \in[-2 / 9,2 / 9]$.

- The Fréchet family: $\boldsymbol{C}_{\alpha, \beta}=\alpha M+(1-\alpha-\beta) \Pi+\beta W$, where $\alpha, \beta \geq 0, \alpha+\beta \leq 1$. Then

$$
d C_{\alpha, \beta}=\alpha d M+(1-\alpha-\beta) d \Pi+\beta d W
$$

and

$$
\tau_{C}=\frac{(\alpha-\beta)(\alpha+\beta+2)}{2}
$$

Archimedean copulas
$C(u, v)=\varphi^{(-1)}(\varphi(u)+\varphi(v))$, where φ is a continuous, strictly decreasing, convex function.
Corollary 6 (Genest and MacKay 1986)
Let X and Y be random variables with an Archimedean copula C generated by φ in
Ω. The population version τ_{C} of Kendall's τ for X and Y is given by

$$
\tau_{C}=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t .
$$

Proof: Let U and V be uniform $(0,1)$ distributed random variables with joint distribution function C, and let K_{C} denote the distribution function of $C(U, V)$. Then

$$
\tau_{C}=4 \mathrm{E}(C(U, V))-1=4 \int_{0}^{1} t d K_{C}(t)-1=3-4 \int_{0}^{1} K_{C}(t) d t
$$

$K_{C}(t)$ is the C-measure of the set $\left\{(u, v) \in R^{2}: C(u, v) \leq t\right\}$, or, equivalently, of the set $\left\{(u, v) \in R^{2}: \varphi(u)+\varphi(v) \geq \varphi(t)\right\}$,
We know that $K_{C}(t)=t-\varphi(t) / \varphi^{\prime}\left(t^{+}\right)$, hence

$$
\tau_{C}=3-4 \int_{0}^{1}\left(t-\frac{\varphi(t)}{\varphi^{\prime}\left(t^{+}\right)}\right) d t=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t .
$$

Archimedean copulas

$C(u, v)=\varphi^{(-1)}(\varphi(u)+\varphi(v))$, where φ is a continuous, strictly decreasing, convex function.

Corollary 6 (Genest and MacKay 1986)

Let X and Y be random variables with an Archimedean copula C generated by φ in Ω. The population version τ_{C} of Kendall's τ for X and Y is given by

$$
\tau_{C}=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t
$$

Proof: Let U and V be uniform $(0,1)$ distributed random variables with joint distribution function C, and let K_{C} denote the distribution function of $C(U, V)$. Then

$K_{C}(t)$ is the C-measure of the set $\left\{(u, v) \in I^{2}: C(u, v) \leq t\right\}$, or, equivalently, of the set $\left\{(u, v) \in R^{2}: \varphi(u)+\varphi(v) \geq \varphi(t)\right\}$
We know that $K_{C}(t)=t-\varphi^{\prime}(t) / \varphi^{\prime}\left(t^{+}\right)$, hence

Archimedean copulas

$C(u, v)=\varphi^{(-1)}(\varphi(u)+\varphi(v))$, where φ is a continuous, strictly decreasing, convex function.

Corollary 6 (Genest and MacKay 1986)

Let X and Y be random variables with an Archimedean copula C generated by φ in
Ω. The population version τ_{C} of Kendall's τ for X and Y is given by

$$
\tau_{C}=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t
$$

Proof: Let U and V be uniform $(0,1)$ distributed random variables with joint distribution function C, and let K_{C} denote the distribution function of $C(U, V)$. Then

$$
\tau_{C}=4 \mathbf{E}(C(U, V))-1=4 \int_{0}^{1} t d K_{C}(t)-1=3-4 \int_{0}^{1} K_{C}(t) d t
$$

$K_{C}(t)$ is the C-measure of the set $\left\{(u, v) \in I^{2}\right.$
set $\left\{(u, v) \in 1^{2}: \varphi(u)+\varphi(v) \geq \varphi(t)\right\}$,
We know that $K_{C}(t)=t-\varphi(t) / \varphi^{\prime}\left(t^{+}\right)$, hence

Archimedean copulas

$C(u, v)=\varphi^{(-1)}(\varphi(u)+\varphi(v))$, where φ is a continuous, strictly decreasing, convex function.

Corollary 6 (Genest and MacKay 1986)

Let X and Y be random variables with an Archimedean copula C generated by φ in
Ω. The population version τ_{C} of Kendall's τ for X and Y is given by

$$
\tau_{C}=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t
$$

Proof: Let U and V be uniform $(0,1)$ distributed random variables with joint distribution function C, and let K_{C} denote the distribution function of $C(U, V)$. Then

$$
\tau_{C}=4 \mathbf{E}(C(U, V))-1=4 \int_{0}^{1} t d K_{C}(t)-1=3-4 \int_{0}^{1} K_{C}(t) d t
$$

$K_{C}(t)$ is the C-measure of the set $\left\{(u, v) \in I^{2}: C(u, v) \leq t\right\}$, or, equivalently, of the set $\left\{(u, v) \in I^{2}: \varphi(u)+\varphi(v) \geq \varphi(t)\right\}$,
We know that $K_{C}(t)=t-\varphi(t) / \varphi^{\prime}\left(t^{+}\right)$, hence

$$
\tau_{C}=3-4 \int_{0}^{1}\left(t-\frac{\varphi(t)}{\varphi^{\prime}\left(t^{+}\right)}\right) d t=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t
$$

Examples

$$
\tau_{C}=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t
$$

- The Clayton family: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>-1, \theta \neq 0$, then

$$
\frac{\varphi(t)}{\varphi^{\prime}(t)}=\frac{\left(t^{-\theta}-1\right)}{-\theta t^{-\theta-1}}=\frac{t^{\theta+1}-t}{\theta} \quad \text { and } \quad \tau_{C}=1+\frac{4}{\theta} \int_{0}^{1}\left(t^{\theta+1}-t\right) d t=\frac{\theta}{\theta+2}
$$

$>$ The Gumbel-Hougaard family: $\phi(t)=(-\log t)^{\theta}, \theta>1$, then

$$
\frac{\varphi(t)}{\varphi^{\prime}(t)}=-\frac{(-\log t)^{\theta}}{\theta(-\log t)^{\theta-1}(1 / t)}=\frac{t \log t}{\theta} \quad \text { and } \quad \tau_{C}=1+4 \int_{0}^{1} \frac{t \log t}{\theta} d t=\frac{\theta-1}{\theta}
$$

Examples

$$
\tau_{C}=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t
$$

- The Clayton family: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>-1, \theta \neq 0$, then

$$
\frac{\varphi(t)}{\varphi^{\prime}(t)}=\frac{\left(t^{-\theta}-1\right)}{-\theta t^{-\theta-1}}=\frac{t^{\theta+1}-t}{\theta} \quad \text { and } \quad \tau_{C}=1+\frac{4}{\theta} \int_{0}^{1}\left(t^{\theta+1}-t\right) d t=\frac{\theta}{\theta+2}
$$

- The Gumbel-Hougaard family: $\phi(t)=(-\log t)^{\theta}, \theta>1$, then

Examples

$$
\tau_{C}=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t
$$

- The Clayton family: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>-1, \theta \neq 0$, then

$$
\frac{\varphi(t)}{\varphi^{\prime}(t)}=\frac{\left(t^{-\theta}-1\right)}{-\theta t^{-\theta-1}}=\frac{t^{\theta+1}-t}{\theta} \quad \text { and } \quad \tau_{C}=1+\frac{4}{\theta} \int_{0}^{1}\left(t^{\theta+1}-t\right) d t=\frac{\theta}{\theta+2}
$$

- The Gumbel-Hougaard family: $\phi(t)=(-\log t)^{\theta}, \theta>1$, then

Examples

$$
\tau_{C}=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t
$$

- The Clayton family: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>-1, \theta \neq 0$, then

$$
\frac{\varphi(t)}{\varphi^{\prime}(t)}=\frac{\left(t^{-\theta}-1\right)}{-\theta t^{-\theta-1}}=\frac{t^{\theta+1}-t}{\theta} \quad \text { and } \quad \tau_{C}=1+\frac{4}{\theta} \int_{0}^{1}\left(t^{\theta+1}-t\right) d t=\frac{\theta}{\theta+2}
$$

- The Gumbel-Hougaard family: $\phi(t)=(-\log t)^{\theta}, \theta>1$, then

Examples

$$
\tau_{C}=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t
$$

- The Clayton family: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>-1, \theta \neq 0$, then

$$
\frac{\varphi(t)}{\varphi^{\prime}(t)}=\frac{\left(t^{-\theta}-1\right)}{-\theta t^{-\theta-1}}=\frac{t^{\theta+1}-t}{\theta} \quad \text { and } \quad \tau_{C}=1+\frac{4}{\theta} \int_{0}^{1}\left(t^{\theta+1}-t\right) d t=\frac{\theta}{\theta+2}
$$

- The Gumbel-Hougaard family: $\phi(t)=(-\log t)^{\theta}, \theta>1$, then

$$
\frac{\varphi(t)}{\varphi^{\prime}(t)}=-\frac{(-\log t)^{\theta}}{\theta(-\log t)^{\theta-1}(1 / t)}=\frac{t \log t}{\theta}
$$

Examples

$$
\tau_{C}=1+4 \int_{0}^{1} \frac{\varphi(t)}{\varphi^{\prime}(t)} d t
$$

- The Clayton family: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>-1, \theta \neq 0$, then

$$
\frac{\varphi(t)}{\varphi^{\prime}(t)}=\frac{\left(t^{-\theta}-1\right)}{-\theta t^{-\theta-1}}=\frac{t^{\theta+1}-t}{\theta} \quad \text { and } \quad \tau_{C}=1+\frac{4}{\theta} \int_{0}^{1}\left(t^{\theta+1}-t\right) d t=\frac{\theta}{\theta+2}
$$

- The Gumbel-Hougaard family: $\phi(t)=(-\log t)^{\theta}, \theta>1$, then

$$
\frac{\varphi(t)}{\varphi^{\prime}(t)}=-\frac{(-\log t)^{\theta}}{\theta(-\log t)^{\theta-1}(1 / t)}=\frac{t \log t}{\theta} \quad \text { and } \quad \tau_{C}=1+4 \int_{0}^{1} \frac{t \log t}{\theta} d t=\frac{\theta-1}{\theta}
$$

Spearman's ρ

Theorem 7

Let X and Y be continuous random variables whose copula is C. Then the population version of Spearman's ρ for X and Y is given by

$$
\rho_{X, Y}=\rho_{C}=3 Q(C, \Pi)=12 \int_{1^{2}} u v d C(u, v)-3=12 \int_{1^{2}} C(u, v) d u d v-3
$$

Spearman's rho is often called the "grade" correlation coefficient. Grades are the population analogs of ranks, that is, if x and y are observations from two random variables X and Y with dilstribution functions F and G, respectively, then the grades of
x and y are given by $u=F(x)$ and $v=G(y)$.
Note that the grades (u and v) are observations from the uniform $(0,1)$ random variables $U=F(X)$ and $V=G(Y)$ whose joint distribution function is C.
The coefficient " 3 " is a "normalization" constant, because $Q(C, \Pi) \in[-1 / 3,1 / 3]$

Spearman's ρ

Theorem 7

Let X and Y be continuous random variables whose copula is C. Then the population version of Spearman's ρ for X and Y is given by

$$
\rho_{X, Y}=\rho_{C}=3 Q(C, \Pi)=12 \int_{1^{2}} u v d C(u, v)-3=12 \int_{1^{2}} C(u, v) d u d v-3
$$

Spearman's rho is often called the "grade" correlation coefficient. Grades are the population analogs of ranks, that is, if x and y are observations from two random variables X and Y with distribution functions F and G, respectively, then the grades of x and y are given by $u=F(x)$ and $v=G(y)$.
variables $U=F(X)$ and $V=G(Y)$ whose joint distribution function is C.
The coefficient " 3 " is a "normalization" constant, because $Q(C, \Pi) \in[-1 / 3,1 / 3]$

Spearman's ρ

Theorem 7

Let X and Y be continuous random variables whose copula is C. Then the population version of Spearman's ρ for X and Y is given by

$$
\rho_{X, Y}=\rho_{C}=3 Q(C, \Pi)=12 \int_{1^{2}} u v d C(u, v)-3=12 \int_{1^{2}} C(u, v) d u d v-3
$$

Spearman's rho is often called the "grade" correlation coefficient. Grades are the population analogs of ranks, that is, if x and y are observations from two random variables X and Y with distribution functions F and G, respectively, then the grades of x and y are given by $u=F(x)$ and $v=G(y)$.
Note that the grades (u and v) are observations from the uniform (0,1) random variables $U=F(X)$ and $V=G(Y)$ whose joint distribution function is C.

Spearman's ρ

Theorem 7

Let X and Y be continuous random variables whose copula is C. Then the population version of Spearman's ρ for X and Y is given by

$$
\rho_{X, Y}=\rho_{C}=3 Q(C, \Pi)=12 \int_{1^{2}} u v d C(u, v)-3=12 \int_{1^{2}} C(u, v) d u d v-3
$$

Spearman's rho is often called the "grade" correlation coefficient. Grades are the population analogs of ranks, that is, if x and y are observations from two random variables X and Y with distribution functions F and G, respectively, then the grades of x and y are given by $u=F(x)$ and $v=G(y)$.
Note that the grades (u and v) are observations from the uniform $(0,1)$ random variables $U=F(X)$ and $V=G(Y)$ whose joint distribution function is C.
The coefficient " 3 " is a "normalization" constant, because $Q(C, \Pi) \in[-1 / 3,1 / 3]$.

Analogue with correlation

Let $U=F(X)$ and $V=G(Y)$, then

$$
\begin{aligned}
\rho_{X, Y} & =\rho_{C}=12 \int_{1^{2}} u v d C(u, v)-3=12 \mathrm{E}(U V)-3 \\
& =\frac{E(U V)-1 / 4}{1 / 12}=\frac{E(U V)-E(U) E(V))}{\sqrt{\operatorname{Var}(U)} \sqrt{\operatorname{Var}(V)}}=\operatorname{Corr}(U, V) .
\end{aligned}
$$

\triangleright Spearman's ρ for a pair of continuous random variables X and Y is identical to Pearson's product-moment correlation coefficient for the grades of X and Y.
\Rightarrow From $\rho_{C}=12 \int_{R}[C(u, v)-u v] d u d v$ we have that ρ_{C} is proportional to the signed volume between the graphs of the copula C and the product copula Π.
\triangleright Thus ρ_{C} is a measure of "average distance" between the distribution of X and Y (as represented by C) and independence (as represented by the copula Π).

Analogue with correlation

Let $U=F(X)$ and $V=G(Y)$, then

$$
\begin{aligned}
\rho_{X, Y} & =\rho_{C}=12 \int_{1^{2}} u v d C(u, v)-3=12 \mathbf{E}(U V)-3 \\
& =\frac{\mathbf{E}(U V)-1 / 4}{1 / 12}=\frac{\mathbf{E}(U V)-\mathbf{E}(U) \mathbf{E}(V))}{\sqrt{\operatorname{Var}(U)} \sqrt{\operatorname{Var}(V)}}=\operatorname{Corr}(U, V) .
\end{aligned}
$$

\triangleright Spearman's ρ for a pair of continuous random variables X and Y is identical to Pearson's product-moment correlation coefficient for the grades of X and Y.
\Rightarrow From $\rho_{C}=12 \int_{R}[C(u, v)-u v] d u d v$ we have that ρ_{C} is proportional to the signed volume between the graphs of the copula C and the product copula Π.
∇ Thus ρ_{C} is a measure of "average distance" between the distribution of X and Y (as represented by C) and independence (as represented by the copula Π).

Analogue with correlation

Let $U=F(X)$ and $V=G(Y)$, then

$$
\begin{aligned}
\rho_{X, Y} & =\rho_{C}=12 \int_{1^{2}} u v d C(u, v)-3=12 \mathbf{E}(U V)-3 \\
& =\frac{\mathbf{E}(U V)-1 / 4}{1 / 12}=\frac{\mathbf{E}(U V)-\mathbf{E}(U) \mathbf{E}(V))}{\sqrt{\operatorname{Var}(U)} \sqrt{\operatorname{Var}(V)}}=\operatorname{Corr}(U, V) .
\end{aligned}
$$

- Spearman's ρ for a pair of continuous random variables X and Y is identical to Pearson's product-moment correlation coefficient for the grades of X and Y.
$\begin{aligned} & \Rightarrow \text { From } \rho_{C}=12 \int_{R 2}[C(u, v)-u v] d u d v \text { we have that } \rho_{C} \text { is proportional to the } \\ & \text { signed volume between the graphs of the copula } C \text { and the product copula } \Pi \text {. } \\ &>\text { Thus } \rho_{C} \text { is a measure of "average distance" between the distribution of } X \text { and } Y \\ & \text { (as represented by } C \text {) and independence (as represented by the copula } \Pi \text {). }\end{aligned}$

Analogue with correlation

Let $U=F(X)$ and $V=G(Y)$, then

$$
\begin{aligned}
\rho_{X, Y} & =\rho_{C}=12 \int_{1^{2}} u v d C(u, v)-3=12 \mathbf{E}(U V)-3 \\
& =\frac{\mathbf{E}(U V)-1 / 4}{1 / 12}=\frac{\mathbf{E}(U V)-\mathbf{E}(U) \mathbf{E}(V))}{\sqrt{\operatorname{Var}(U)} \sqrt{\operatorname{Var}(V)}}=\operatorname{Corr}(U, V) .
\end{aligned}
$$

- Spearman's ρ for a pair of continuous random variables X and Y is identical to Pearson's product-moment correlation coefficient for the grades of X and Y.
- From $\rho_{C}=12 \int_{1^{2}}[C(u, v)-u v] d u d v$ we have that ρ_{C} is proportional to the signed volume between the graphs of the copula C and the product copula Π.
\quad Thus ρ_{C} is a measure of "average distance" between the distribution of X and
(as represented by C) and independence (as represented by the copula Π).

Analogue with correlation

Let $U=F(X)$ and $V=G(Y)$, then

$$
\begin{aligned}
\rho_{X, Y} & =\rho_{C}=12 \int_{1^{2}} u v d C(u, v)-3=12 \mathbf{E}(U V)-3 \\
& =\frac{\mathbf{E}(U V)-1 / 4}{1 / 12}=\frac{\mathbf{E}(U V)-\mathbf{E}(U) \mathbf{E}(V))}{\sqrt{\operatorname{Var}(U)} \sqrt{\operatorname{Var}(V)}}=\operatorname{Corr}(U, V) .
\end{aligned}
$$

- Spearman's ρ for a pair of continuous random variables X and Y is identical to Pearson's product-moment correlation coefficient for the grades of X and Y.
- From $\rho_{C}=12 \int_{1^{2}}[C(u, v)-u v] d u d v$ we have that ρ_{C} is proportional to the signed volume between the graphs of the copula C and the product copula Π.
- Thus ρ_{C} is a measure of "average distance" between the distribution of X and Y (as represented by C) and independence (as represented by the copula Π).

Examples

- Farlie-Gumbel-Morgernstern family: $C_{\theta}(u, v)=u v+\theta u v(1-u)(1-v)$, where θ is in $[-1,1]$. Then $\tau_{C}=2 \theta / 9 \in[-2 / 9,2 / 9]$. Compute

$$
\begin{aligned}
\rho_{C} & =12 \int_{R^{2}}[u v+\theta u v(1-u)(1-v)] d u d v-3 \\
& =12\left(\frac{1}{2} \frac{1}{2}+\theta\left(\int_{0}^{1} u(1-u) d u\right)^{2}\right)-3=\frac{\theta}{3} .
\end{aligned}
$$

\triangleright Fréchet family: $C_{\alpha, \beta}=\alpha M+(1-\alpha-\beta) \Pi+\beta W$, where $\alpha, \beta \geq 0, \alpha+\beta \leq 1$ Then

Examples

- Farlie-Gumbel-Morgernstern family: $C_{\theta}(u, v)=u v+\theta u v(1-u)(1-v)$, where θ is in $[-1,1]$. Then $\tau_{C}=2 \theta / 9 \in[-2 / 9,2 / 9]$. Compute

$$
\begin{aligned}
\rho_{C} & =12 \int_{1^{2}}[u v+\theta u v(1-u)(1-v)] d u d v-3 \\
& =12\left(\frac{1}{2} \frac{1}{2}+\theta\left(\int_{0}^{1} u(1-u) d u\right)^{2}\right)-3=\frac{\theta}{3} .
\end{aligned}
$$

- Fréchet family: $\boldsymbol{C}_{\alpha, \beta}=\alpha M+(1-\alpha-\beta) \Pi+\beta W$, where $\alpha, \beta \geq 0, \alpha+\beta \leq 1$. Then

Examples

- Farlie-Gumbel-Morgernstern family: $C_{\theta}(u, v)=u v+\theta u v(1-u)(1-v)$, where θ is in $[-1,1]$. Then $\tau_{C}=2 \theta / 9 \in[-2 / 9,2 / 9]$. Compute

$$
\begin{aligned}
\rho_{C} & =12 \int_{1^{2}}[u v+\theta u v(1-u)(1-v)] d u d v-3 \\
& =12\left(\frac{1}{2} \frac{1}{2}+\theta\left(\int_{0}^{1} u(1-u) d u\right)^{2}\right)-3=\frac{\theta}{3} .
\end{aligned}
$$

- Fréchet family: $C_{\alpha, \beta}=\alpha M+(1-\alpha-\beta) \Pi+\beta W$, where $\alpha, \beta \geq 0, \alpha+\beta \leq 1$. Then

$$
\rho_{C}=3 \alpha Q(M, \Pi)+3(1-\alpha-\beta) Q(\Pi, \Pi)+3 \beta Q(W, \Pi)=\alpha-\beta .
$$

Copula of $\left(X, X^{2}\right)$
Let $X \sim N(0,1)$ and $Y=X^{2}$.

- Margin $F: F(x)=\mathbf{P}(X \leq x)=\Phi(x)=\int_{-\infty}^{x} \frac{-y^{2} / 2}{\sqrt{2 \pi}} d y$.
- Margin $G: G(y)=P(Y \leq y)=\mathbf{P}\left(X^{2} \leq y\right)$. Then $G(y)=0$ for $y \leq 0$ and for $y \geq 0$

$$
G(y)=P(|x| \leq \sqrt{y})=\Phi(\sqrt{y})-\phi(-\sqrt{y})=2 \phi(\sqrt{y})-1=1-2 \phi(-\sqrt{y}) .
$$

- Common distribution function: Let $y \geq 0$.

$$
\begin{aligned}
H(x, y) & =\mathbf{P}(X \leq x, Y \leq y)-\mathbf{P}(X \leq x,|X| \leq \sqrt{y}) \\
& =\Phi(x \wedge \sqrt{y})-\Phi(x \wedge(-\sqrt{y}))=\Phi(x) \wedge \Phi(\sqrt{y})-\Phi(x) \wedge \Phi(-\sqrt{y}) .
\end{aligned}
$$

- Copula:

$$
H(x, y)=F(x) \wedge \frac{1+G(y)}{2}-F(x) \wedge \frac{1-G(y)}{2},
$$

and $C(u, v)=u \wedge \frac{1+v}{2}-u \wedge \frac{1-v}{2}$,
$u, v \in R^{2}$

Copula of $\left(X, X^{2}\right)$
Let $X \sim N(0,1)$ and $Y=X^{2}$.

- Margin $F: F(x)=\mathbf{P}(X \leq x)=\Phi(x)=\int_{-\infty}^{x} \frac{-y^{2} / 2}{\sqrt{2 \pi}} d y$.
- Margin $G: G(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(X^{2} \leq y\right)$. Then $G(y)=0$ for $y \leq 0$ and for $y \geq 0$:

$$
G(y)=\mathbf{P}(|X| \leq \sqrt{y})=\Phi(\sqrt{y})-\Phi(-\sqrt{y})=2 \Phi(\sqrt{y})-1=1-2 \Phi(-\sqrt{y}) .
$$

- Common distribution function: Let $y \geq 0$.

$$
\begin{aligned}
H(x, y) & =\mathbf{P}(X \leq x, V \leq y)-\mathbf{P}(X \leq x,|x| \leq \sqrt{y}) \\
& =\Phi(x \wedge \sqrt{y})-\Phi(x \wedge(-\sqrt{y}))=\Phi(x) \wedge \Phi(\sqrt{y})-\phi(x) \wedge \Phi(-\sqrt{y}) .
\end{aligned}
$$

- Copula:

and $C(u, v)=u \wedge \frac{1+v}{2}-u \wedge \frac{1-v}{2}, \quad u, v \in I^{2}$.

Copula of $\left(X, X^{2}\right)$

Let $X \sim N(0,1)$ and $Y=X^{2}$.

- Margin $F: F(x)=\mathbf{P}(X \leq x)=\Phi(x)=\int_{-\infty}^{x} \frac{-y^{2} / 2}{\sqrt{2 \pi}} d y$.
- Margin $G: G(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(X^{2} \leq y\right)$. Then $G(y)=0$ for $y \leq 0$ and for $y \geq 0$:

$$
G(y)=\mathbf{P}(|X| \leq \sqrt{y})=\Phi(\sqrt{y})-\Phi(-\sqrt{y})=2 \Phi(\sqrt{y})-1=1-2 \Phi(-\sqrt{y}) .
$$

- Common distribution function: Let $y \geq 0$.

$$
\begin{aligned}
H(x, y) & =\mathbf{P}(X \leq x, Y \leq y)=\mathbf{P}(X \leq x,|X| \leq \sqrt{y}) \\
& =\Phi(x \wedge \sqrt{y})-\Phi(x \wedge(-\sqrt{y}))=\Phi(x) \wedge \Phi(\sqrt{y})-\Phi(x) \wedge \Phi(-\sqrt{y}) .
\end{aligned}
$$

- Copula:

Copula of $\left(X, X^{2}\right)$

Let $X \sim N(0,1)$ and $Y=X^{2}$.

- Margin $F: F(x)=\mathbf{P}(X \leq x)=\Phi(x)=\int_{-\infty}^{x} \frac{-y^{2} / 2}{\sqrt{2 \pi}} d y$.
- Margin $G: G(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(X^{2} \leq y\right)$. Then $G(y)=0$ for $y \leq 0$ and for $y \geq 0$:

$$
G(y)=\mathbf{P}(|X| \leq \sqrt{y})=\Phi(\sqrt{y})-\Phi(-\sqrt{y})=2 \Phi(\sqrt{y})-1=1-2 \Phi(-\sqrt{y}) .
$$

- Common distribution function: Let $y \geq 0$.

$$
\begin{aligned}
H(x, y) & =\mathbf{P}(X \leq x, Y \leq y)=\mathbf{P}(X \leq x,|X| \leq \sqrt{y}) \\
& =\Phi(x \wedge \sqrt{y})-\Phi(x \wedge(-\sqrt{y}))=\Phi(x) \wedge \Phi(\sqrt{y})-\Phi(x) \wedge \Phi(-\sqrt{y}) .
\end{aligned}
$$

- Copula:

$$
H(x, y)=F(x) \wedge \frac{1+G(y)}{2}-F(x) \wedge \frac{1-G(y)}{2}, \quad x, y \in \mathbb{R}^{2} .
$$

Copula of $\left(X, X^{2}\right)$

Let $X \sim N(0,1)$ and $Y=X^{2}$.

- Margin $F: F(x)=\mathbf{P}(X \leq x)=\Phi(x)=\int_{-\infty}^{x} \frac{-y^{2} / 2}{\sqrt{2 \pi}} d y$.
- Margin $G: G(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(X^{2} \leq y\right)$. Then $G(y)=0$ for $y \leq 0$ and for $y \geq 0$:

$$
G(y)=\mathbf{P}(|X| \leq \sqrt{y})=\Phi(\sqrt{y})-\Phi(-\sqrt{y})=2 \Phi(\sqrt{y})-1=1-2 \Phi(-\sqrt{y}) .
$$

- Common distribution function: Let $y \geq 0$.

$$
\begin{aligned}
H(x, y) & =\mathbf{P}(X \leq x, Y \leq y)=\mathbf{P}(X \leq x,|X| \leq \sqrt{y}) \\
& =\Phi(x \wedge \sqrt{y})-\Phi(x \wedge(-\sqrt{y}))=\Phi(x) \wedge \Phi(\sqrt{y})-\Phi(x) \wedge \Phi(-\sqrt{y}) .
\end{aligned}
$$

- Copula:

$$
H(x, y)=F(x) \wedge \frac{1+G(y)}{2}-F(x) \wedge \frac{1-G(y)}{2}, \quad x, y \in \mathbb{R}^{2} .
$$

and $C(u, v)=u \wedge \frac{1+v}{2}-u \wedge \frac{1-v}{2}, \quad u, v \in I^{2}$.

Spearman's ρ for X and X^{2}

$$
\begin{aligned}
& C(u, v)=u \wedge \frac{1+v}{2}-u \wedge \frac{1-v}{2}, \quad u, v \in I^{2} \text {. Then } \\
& \rho_{C}=12 \int_{R^{2}} C(u, v) d u d v-3=12 \int_{R^{2}} u \wedge \frac{1+v}{2} d u d v-12 \int_{R^{2}} u \wedge \frac{1-v}{2} d u d v-3 . \\
& \text { Let } Y=-X^{2} . \\
& \quad \text { Margin } G: G(y)=P(Y \leq y)=P\left(-X^{2} \leq y\right) \text {. Then } G(y)=1 \text { for } y \geq 0 \text { and let } \\
& y-=-\min (y, 0) . \\
& \qquad G(y)=P(|X| \geq \sqrt{y-})=2 \Phi(-\sqrt{y-}) .
\end{aligned}
$$

- Common distribution function: Let $y \geq 0$.

$$
\begin{aligned}
H(x, y) & =\mathbf{P}(X \leq x, Y \leq y)=\mathbf{P}(X \leq x,|X| \geq \sqrt{y-}) \\
& =\Phi(x \wedge(-\sqrt{y-}))+\Phi(x \vee \sqrt{y-})-\Phi(\sqrt{y-}) \\
& =F(x) \wedge \frac{G(y)}{2}+\left(1-\frac{G(y)}{2}\right) \vee F(x)-1+\frac{G(y)}{2}-\Phi(\sqrt{y-}) .
\end{aligned}
$$

- Copula: $C(u, v)=u \wedge \frac{v}{2}+u \vee(1-v / 2)-1+\frac{v}{2}, \quad u, v \in R^{2}$.
\Rightarrow Spearman's ρ :
$\rho_{C}=12 \int_{R} C(u, v) d u d v-3=12 \int_{R}\left(u \wedge \frac{v}{2}+u v(1-v / 2)-1+\frac{v}{2}\right) d u d v-3=0$.

Spearman's ρ for X and X^{2}

$$
\begin{aligned}
& C(u, v)=u \wedge \frac{1+v}{2}-u \wedge \frac{1-v}{2}, \quad u, v \in R^{2} . \text { Then } \\
& \rho_{C}=12 \int_{R} C(u, v) d u d v-3=12 \int_{R} u \wedge \frac{1+v}{2} d u d v-12 \int_{R} u \wedge \frac{1-v}{2} d u d v-3 .
\end{aligned}
$$

Let $Y=-X^{2}$.

- Margin $G: G(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(-X^{2} \leq y\right)$. Then $G(y)=1$ for $y \geq 0$ and let $y_{-}=-\min (y, 0)$.

$$
G(y)=\mathbf{P}\left(|X| \geq \sqrt{y_{-}}\right)=2 \Phi\left(-\sqrt{y_{-}}\right) .
$$

- Common distribution function: Let $\mathrm{y} \geq 0$.
- Copula: $C(u, v)=u \wedge \frac{v}{2}$
\downarrow Spearman's ρ :

Spearman's ρ for X and X^{2}

$$
\begin{aligned}
& C(u, v)=u \wedge \frac{1+v}{2}-u \wedge \frac{1-v}{2}, \quad u, v \in R^{2} . \text { Then } \\
& \rho_{C}=12 \int_{R} C(u, v) d u d v-3=12 \int_{R} u \wedge \frac{1+v}{2} d u d v-12 \int_{R} u \wedge \frac{1-v}{2} d u d v-3 .
\end{aligned}
$$

Let $Y=-X^{2}$.

- Margin $G: G(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(-X^{2} \leq y\right)$. Then $G(y)=1$ for $y \geq 0$ and let $y_{-}=-\min (y, 0)$.

$$
G(y)=\mathbf{P}\left(|X| \geq \sqrt{y_{-}}\right)=2 \Phi\left(-\sqrt{y_{-}}\right) .
$$

- Common distribution function: Let $y \geq 0$.

$$
\begin{aligned}
H(x, y) & =\mathbf{P}(X \leq x, Y \leq y)=\mathbf{P}\left(X \leq x,|X| \geq \sqrt{y_{-}}\right) \\
& =\Phi\left(x \wedge\left(-\sqrt{y_{-}}\right)\right)+\Phi\left(x \vee \sqrt{y_{-}}\right)-\Phi\left(\sqrt{y_{-}}\right) \\
& =F(x) \wedge \frac{G(y)}{2}+\left(1-\frac{G(y)}{2}\right) \vee F(x)-1+\frac{G(y)}{2}-\Phi\left(\sqrt{y_{-}}\right) .
\end{aligned}
$$

- Copula: $C(u, v)$
- Spearman's ρ :

Spearman's ρ for X and X^{2}

$$
\begin{aligned}
& C(u, v)=u \wedge \frac{1+v}{2}-u \wedge \frac{1-v}{2}, \quad u, v \in R^{2} . \text { Then } \\
& \rho_{C}=12 \int_{R} C(u, v) d u d v-3=12 \int_{R} u \wedge \frac{1+v}{2} d u d v-12 \int_{R} u \wedge \frac{1-v}{2} d u d v-3 .
\end{aligned}
$$

Let $Y=-X^{2}$.

- Margin $G: G(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(-X^{2} \leq y\right)$. Then $G(y)=1$ for $y \geq 0$ and let $y_{-}=-\min (y, 0)$.

$$
G(y)=\mathbf{P}\left(|X| \geq \sqrt{y_{-}}\right)=2 \Phi\left(-\sqrt{y_{-}}\right) .
$$

- Common distribution function: Let $y \geq 0$.

$$
\begin{aligned}
H(x, y) & =\mathbf{P}(X \leq x, Y \leq y)=\mathbf{P}\left(X \leq x,|X| \geq \sqrt{y_{-}}\right) \\
& =\Phi\left(x \wedge\left(-\sqrt{y_{-}}\right)\right)+\Phi\left(x \vee \sqrt{y_{-}}\right)-\Phi\left(\sqrt{y_{-}}\right) \\
& =F(x) \wedge \frac{G(y)}{2}+\left(1-\frac{G(y)}{2}\right) \vee F(x)-1+\frac{G(y)}{2}-\Phi\left(\sqrt{y_{-}}\right) .
\end{aligned}
$$

- Copula: $C(u, v)=u \wedge \frac{v}{2}+u \vee(1-v / 2)-1+\frac{v}{2}, \quad u, v \in I^{2}$.

Spearman's ρ for X and X^{2}

$$
\begin{aligned}
& C(u, v)=u \wedge \frac{1+v}{2}-u \wedge \frac{1-v}{2}, \quad u, v \in R^{2} . \text { Then } \\
& \rho_{C}=12 \int_{R} C(u, v) d u d v-3=12 \int_{R} u \wedge \frac{1+v}{2} d u d v-12 \int_{R} u \wedge \frac{1-v}{2} d u d v-3 .
\end{aligned}
$$

Let $Y=-X^{2}$.

- Margin $G: G(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(-X^{2} \leq y\right)$. Then $G(y)=1$ for $y \geq 0$ and let $y_{-}=-\min (y, 0)$.

$$
G(y)=\mathbf{P}\left(|X| \geq \sqrt{y_{-}}\right)=2 \Phi\left(-\sqrt{y_{-}}\right) .
$$

- Common distribution function: Let $y \geq 0$.

$$
\begin{aligned}
H(x, y) & =\mathbf{P}(X \leq x, Y \leq y)=\mathbf{P}\left(X \leq x,|X| \geq \sqrt{y_{-}}\right) \\
& =\Phi\left(x \wedge\left(-\sqrt{y_{-}}\right)\right)+\Phi\left(x \vee \sqrt{y_{-}}\right)-\Phi\left(\sqrt{y_{-}}\right) \\
& =F(x) \wedge \frac{G(y)}{2}+\left(1-\frac{G(y)}{2}\right) \vee F(x)-1+\frac{G(y)}{2}-\Phi\left(\sqrt{y_{-}}\right)
\end{aligned}
$$

- Copula: $C(u, v)=u \wedge \frac{v}{2}+u \vee(1-v / 2)-1+\frac{v}{2}, \quad u, v \in I^{2}$.
- Spearman's ρ :

$$
\rho_{C}=12 \int_{1^{2}} C(u, v) d u d v-3=12 \int_{1^{2}}\left(u \wedge \frac{v}{2}+u \vee(1-v / 2)-1+\frac{v}{2}\right) d u d v-3=0 .
$$

Hoeffding's lemma 1940

Let X and Y be random variables with joint distribution function H and margins F and G, such that $\mathbf{E}(|X|), \mathbf{E}(Y)$, and $\mathbf{E}(|X Y|)$ are all finite. Then

$$
\operatorname{Cov}(X, Y)=\int_{\mathbb{R}^{2}}[H(x, y)-F(x) G(y)] d x d y
$$

Moreover,

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\int_{\mathbb{R}^{2}}[C(F(x), G(y))-F(x) G(y)] d x d y \\
& =\int_{1^{2}}[C(u, v)-u v] d F^{-1}(u) d G^{-1}(v)
\end{aligned}
$$

Measures of dependence

- Schweizer and Wolff's σ is given by

$$
\sigma_{X, Y}=\int_{12}|C(u, v)-u v| d u d v
$$

- For any $p, 1 \geq p<\infty$, the L_{p} distance between C and Π is given by

$$
\left(k_{p} \int_{1^{2}}|C(u, v)-u v|^{p} d u d v\right)^{1 / p}
$$

where k_{p} is a constant chosen so that the quantity is 1 when $C=M$ or W

