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Overview



GOAL
Construct estimator 0, = é( Ui, ..., U,) from iid pseudoobservations

U]_ = ﬁn(X]_) D Cgo

Parametric family of copulas
We will assume that

Co, € {Cy,0 € O}



Possible contamination ¢ € (0, 1)

C=(1-¢)Cy, +cC where C # G,

Approach
Minimize "distance” of empirical distribution ]f",, and theoretical distribution Py

0, = arg min D(P,, Py)



Maximum mean discrepancy (MMD)

/deP’

where F is a universal reproducing kernel Hilbert space (RKHS)

D(P,Q) = sup
feF
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Maximum Mean Discrepancy

A quick tour through Muandet et al. (2017)



One measure of distance/similarity
Suppose X and Y are two random variables with EX = EY = 0, then

Cov(X,Y) = EXY =: (X,Y)

is an inner product.
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Inner products on suitable spaces

(x, y) = (B(x), (y))y, forall x,y € X

where H is a Hilbert space.



Inner products on suitable spaces

<X7 y> = <¢(X)> Qb(}/))q.[; for all X,y S X

where H is a Hilbert space.

Positive definite kernel
Function k : X x X — R with

k(x,y) = k(y,x) and > cigk(x,x) > 0.

ij=1

forall x,y,x1,...,x, € X and ¢1,...,¢c, € R.



Reproducing kernel Hilbert spaces (RKHS)
Evaluation functionals F,[f] := f(x) fulfill

| Flfl] = [f(x)| < C|ifllx forall f e H,xe X

for some constant C > 0.



Reproducing kernel Hilbert spaces (RKHS)
Evaluation functionals F,[f] := f(x) fulfill

|Flfl] = 1F(x)| < Clfllx  forall f € H,x € X

for some constant C > 0.

Reproducing property
For all x € X, there is a function k, € H such that

F(x) = (ke Ty -



Representation of point x by

where k : X x X — R is some two-variable function.



Representation of point x by

where k : X x X — R is some two-variable function.

Reproducing property and feature maps

(0(x), D))y = (ker ky)yy = ky(x) = k(x, y),



Theorem

For every positive definite function k(-,-) on X x X there exists a unique RKHS
with k as its reproducing kernel.

Conversely, the reproducing kernel of an RKHS is unique and positive definite.
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Point representation

x€ X k(x,:)eH

Heuristic extension to Dirac measures

/X y 8x(dy) = x — k(x,") = /X k(y,-) b.(dy)
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Representer of integral evaluation

/Xf(t) 5X(dt)=/X(f, k(t,-))3 0x(dt)

Dirac measure representation

<f /Xk(t,-) 5X(dt)>H

5€DH/ (y,*) dx(dy) = k(x,-) e H
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STEP 1: Dirac measures

5XH>/Xk(y,‘) dx(dy)
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STEP 1: Dirac measures
X

STEP 2: Discrete measures

M:Za,-éx,. HZa;/)(k(y,-) dx(dy) Z/Xk(yw) 1(dy)

(1)
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STEP 1: Dirac measures
X

STEP 2: Discrete measures
p=Yoad o a [ K bl = [ Ko@) @)
i=1 i=1 X X

STEP 3: In a RKHS #, linear combinations as in (1) form a dense subset of H
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STEP 1:

STEP 2:

STEP 3:
STEP 4:

Dirac measures

6XH>/Xk(y,‘) dx(dy)

Discrete measures
p=Yoad o a [ K bl = [ Ko@) @)
i=1 i=1 X X

In a RKHS #, linear combinations as in (1) form a dense subset of H

Probability measures

PHA}%)WW)
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Kernel Mean Embedding

p:MU(X) = H, P

Existence

Ep/k(X, X) <oo:>{

- /X k(y, ") B(dy)

up € ‘H and

EP[f(X)] = (f, pip)n
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Example
Let k(x,y) =exp{xy}, x,y € R,and Y ~ P

—> pp= /X k(y.") P(dy) = Ek(Y,") = Ee”

Thus, pp(s) = Ee®” is moment-generating function.
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Epr/k(X, X) < 00 => {

pp € H and

EIP’[f(X)] = <f7,UIP’>H
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Expectation is bounded operator
For operator Lpf := Ef(X) where X ~ P it holds

|Lpf| = [EF(X)] < E!f( )l

=E[(f, k(X, )ul <EV KX, X)||f|ln
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Expectation is bounded operator
For operator Lpf := Ef(X) where X ~ P it holds

|Lpf| = [EF(X)] < E!f( )l

=E[(f, k(X, )ul <EV KX, X)||f|ln

Riesz representation
For all f € H, there is a h € H such that Lpf = (f, h)y

= h(x) = (k(x,-), h)yy = Lpk(x,-) = Ek(x, X) = /k(x,y) P(dy)
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Expectation is bounded operator
For operator Lpf := Ef(X) where X ~ P it holds

|Lef| = [EF(X)] < E[f(X)]
= E[(f, k(X, )ul < Ev/k(X, X)IIf]l

Riesz representation
For all f € H, there is a h € H such that Lpf = (f, h)y

= h(x) = (k(x,-), )y = Lpk(x,-) = Ek(x, X) = /k(x,y) P(dy)

— h= /k(wy) P(dy) = pr
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Integral Probability Measure (IPM)

fer

17 .l = supd [ 00 P - [ 1) @0}

where F is a space of real-valued bounded measurable functions.
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Integral Probability Measure (IPM)

fer

17 .l = supd [ 00 P - [ 1) @0}

where F is a space of real-valued bounded measurable functions.

Maximum Mean Discrepancy

IPM on F = {f] ||f|ls < 1} where H is a RKHS
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MMD[H, P, Q] = o {/ f(x / dX)}
_ihlpl{<f > < e @(dx)>}

= sup { f7#1P>—MQ>}
IFlI<1

= HMIP - M@HH



Relating Distance to Expectation
If X ~ P, then

where X is an independent copy of X.
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Relating Distance to Expectation
If X ~ P, then

where X is an independent copy of X.

MMD[#, P, Q> = ||uz — ol
= (Up — fQ, P — HQ)H

= [lpellF — 2(ue, po)u + llual%
= Ek(X,X) — 2Ek(X,Y)+Ek(Y,Y),

where X, X ~ P and Y, Y ~ Q are independent copies.
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Copula Estimation via MMD




Approach
Minimize
MMD[F, B, Py]? = /k(u, v) Py(du)Py(dv)

-2 / k(u,v) Py(du)P,(dv)

+/k(u, v) P,(du)P,(dv)

MMDI[#, P, Q]2 = Ek(X, X) — 2Ek(X,Y)+ Ek(Y,Y)
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Empirical Measure for Pseudoobserverations

R 1 —
Pn:;;%

Estimator

b, = arg renei(g{/k(u, v) Po(du)Py(dv) — %é/k(u, U;)P(du)}
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Non-asymptotic guarantees
Let k € C?([0,1]9). Then, with probability 1 — & — v € (0,1) where §,v > 0

MMD[F, F;,, o] < inf MMD[F, Fy, I
n €

+(§ sup k(u,V))1/2{1+\/Tg5}

nue[O,lld
442 2d\ M/
+( 10|l log )

n v
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Under suitable conditions we have

(a) Strong Consistency

~ Pp-a.s.
0, X560, asn— oo

(b) Asymptotic Normality
Vn(0, — 60) — N(0,)  as n — oo,

where X is the asymptotic covariance matrix of the limiting distribution.
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