Copula Estimation via Maximum Mean Discrepancy

A review of Alquier et al. (2020) and Muandet et al. (2017)

Albert Rapp

WiSe 20/21

Ulm University, Institute of Stochastics

Overview

GOAL

Construct estimator $\hat{ heta}_n = \hat{ heta}(U_1, \dots, U_n)$ from iid pseudoobservations

$$U_1 = \hat{F}_n(X_1) \sim C_{\theta_0}$$

Parametric family of copulas

We will assume that

$$C_{\theta_0} \in \{C_{\theta}, \theta \in \Theta\}$$

Possible contamination $\varepsilon \in (0,1)$

$$C = (1-arepsilon) C_{ heta_0} + arepsilon ilde{C}$$
 where $ilde{C}
eq C_{ heta_0}$

Approach

Minimize "distance" of empirical distribution $\hat{\mathbb{P}}_n$ and theoretical distribution $\mathbb{P}_{ heta}$

$$\hat{ heta}_n = rg\min_{ heta \in \Theta} \mathbb{D}(\hat{\mathbb{P}}_n, \mathbb{P}_{ heta})$$

Maximum mean discrepancy (MMD)

$$\mathbb{D}(\mathbb{P},\mathbb{Q}) = \sup_{f \in \mathcal{F}} \bigg| \int f \ d\mathbb{P} - \int f \ d\mathbb{Q} \bigg|,$$

where \mathcal{F} is a universal reproducing kernel Hilbert space (RKHS)

Maximum Mean Discrepancy

A quick tour through Muandet et al. (2017)

One measure of distance/similarity

Suppose X and Y are two random variables with $\mathbb{E}X=\mathbb{E}Y=0$, then

$$Cov(X, Y) = \mathbb{E}XY =: \langle X, Y \rangle$$

is an inner product.

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3, \quad (x,y) \mapsto \left(x,y,x^2+y^2\right)$$

Inner products on suitable spaces

$$\langle x, y \rangle = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}, \text{ for all } x, y \in \mathcal{X}$$

where \mathcal{H} is a Hilbert space.

Inner products on suitable spaces

$$\langle x, y \rangle = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}, \text{ for all } x, y \in \mathcal{X}$$

where ${\cal H}$ is a Hilbert space.

Positive definite kernel

Function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with

$$k(x,y) = k(y,x)$$
 and $\sum_{i,j=1}^{n} c_i c_j k(x_i,x_j) \geq 0.$

for all $x, y, x_1, \ldots, x_n \in \mathcal{X}$ and $c_1, \ldots, c_n \in \mathbb{R}$.

Reproducing kernel Hilbert spaces (RKHS)

Evaluation functionals $\mathcal{F}_x[f] := f(x)$ fulfill

$$|\mathcal{F}_x[f]| = |f(x)| \le C||f||_{\mathcal{H}}$$
 for all $f \in \mathcal{H}, x \in \mathcal{X}$

for some constant C > 0.

Reproducing kernel Hilbert spaces (RKHS)

Evaluation functionals $\mathcal{F}_x[f] := f(x)$ fulfill

$$|\mathcal{F}_x[f]| = |f(x)| \le C||f||_{\mathcal{H}}$$
 for all $f \in \mathcal{H}, x \in \mathcal{X}$

for some constant C > 0.

Reproducing property

For all $x \in \mathcal{X}$, there is a function $k_x \in \mathcal{H}$ such that

$$f(x) = \langle k_x, f \rangle_{\mathcal{H}}.$$

Representation of point x by

$$\phi(x)=k_x=:k(x,\cdot).$$

where $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is some two-variable function.

Representation of point x by

$$\phi(x)=k_x=:k(x,\cdot).$$

where $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is some two-variable function.

Reproducing property and feature maps

$$\langle \phi(x), \phi(y) \rangle_{\mathcal{H}} = \langle k_x, k_y \rangle_{\mathcal{H}} = k_y(x) = k(x, y),$$

Theorem

For every positive definite function $k(\cdot, \cdot)$ on $\mathcal{X} \times \mathcal{X}$ there exists a unique RKHS with k as its reproducing kernel.

Conversely, the reproducing kernel of an RKHS is unique and positive definite.

Point representation

$$x \in \mathcal{X} \mapsto k(x, \cdot) \in \mathcal{H}$$

Heuristic extension to Dirac measures

$$\int_{\mathcal{X}} y \, \delta_{x}(dy) = x \mapsto k(x,\cdot) = \int_{\mathcal{X}} k(y,\cdot) \, \delta_{x}(dy)$$

Representer of integral evaluation

$$\int_{\mathcal{X}} f(t) \, \delta_{x}(dt) = \int_{\mathcal{X}} \langle f, \, k(t, \cdot) \rangle_{\mathcal{H}} \, \delta_{x}(dt) = \left\langle f, \, \int_{\mathcal{X}} k(t, \cdot) \, \delta_{x}(dt) \right\rangle_{\mathcal{H}}$$

Dirac measure representation

$$\delta_{\mathsf{x}} \in \mathcal{D} \mapsto \int_{\mathcal{X}} k(\mathsf{y},\cdot) \; \delta_{\mathsf{x}}(\mathsf{d}\mathsf{y}) = k(\mathsf{x},\cdot) \in \mathcal{H}$$

$$\delta_{\mathsf{x}} \mapsto \int_{\mathcal{X}} k(y,\cdot) \; \delta_{\mathsf{x}}(\mathsf{d}y)$$

$$\delta_{\mathsf{x}} \mapsto \int_{\mathcal{X}} k(y,\cdot) \, \delta_{\mathsf{x}}(dy)$$

STEP 2: Discrete measures

$$\mu = \sum_{i=1}^{n} a_i \delta_{x_i} \mapsto \sum_{i=1}^{n} a_i \int_{\mathcal{X}} k(y, \cdot) \, \delta_{x_i}(dy) = \int_{\mathcal{X}} k(y, \cdot) \, \mu(dy) \tag{1}$$

$$\delta_{\mathsf{x}} \mapsto \int_{\mathcal{X}} k(y,\cdot) \, \delta_{\mathsf{x}}(dy)$$

STEP 2: Discrete measures

$$\mu = \sum_{i=1}^{n} a_i \delta_{x_i} \mapsto \sum_{i=1}^{n} a_i \int_{\mathcal{X}} k(y,\cdot) \, \delta_{x_i}(dy) = \int_{\mathcal{X}} k(y,\cdot) \, \mu(dy) \tag{1}$$

STEP 3: In a RKHS \mathcal{H} , linear combinations as in (1) form a dense subset of \mathcal{H}

$$\delta_{\mathsf{x}} \mapsto \int_{\mathcal{X}} k(y,\cdot) \; \delta_{\mathsf{x}}(\mathsf{d}y)$$

STEP 2: Discrete measures

$$\mu = \sum_{i=1}^{n} a_i \delta_{x_i} \mapsto \sum_{i=1}^{n} a_i \int_{\mathcal{X}} k(y,\cdot) \, \delta_{x_i}(dy) = \int_{\mathcal{X}} k(y,\cdot) \, \mu(dy) \tag{1}$$

STEP 3: In a RKHS \mathcal{H} , linear combinations as in (1) form a dense subset of \mathcal{H}

STEP 4: Probability measures

$$\mathbb{P}\mapsto \int_{\mathcal{X}} k(y,\cdot) \; \mathbb{P}(dy)$$

Kernel Mean Embedding

$$\mu: \mathcal{M}^1_+(\mathcal{X}) o \mathcal{H}, \quad \mathbb{P} \mapsto \int_{\mathcal{X}} k(y,\cdot) \; \mathbb{P}(\mathsf{d}y)$$

Existence

$$\mathbb{E}_{\mathbb{P}}\sqrt{k(X,X)}<\infty\Longrightarrow egin{cases} \mu_{\mathbb{P}}\in\mathcal{H} ext{ and} \ \mathbb{E}_{\mathbb{P}}[f(X)]=\langle f,\mu_{\mathbb{P}}
angle_{\mathcal{H}} \end{cases}$$

Example

Let
$$k(x, y) = \exp\{xy\}, x, y \in \mathbb{R}$$
, and $Y \sim \mathbb{P}$

$$\Longrightarrow \mu_{\mathbb{P}} = \int_{\mathcal{X}} k(y,\cdot) \; \mathbb{P}(dy) = \mathbb{E} k(Y,\cdot) = \mathbb{E} e^{\cdot Y}$$

Thus, $\mu_P(s) = \mathbb{E}e^{sY}$ is moment-generating function.

$$\mathbb{E}_{\mathbb{P}}\sqrt{k(X,X)}<\infty\Longrightarrow egin{cases} \mu_{\mathbb{P}}\in\mathcal{H} ext{ and} \ \mathbb{E}_{\mathbb{P}}[f(X)]=\langle f,\mu_{\mathbb{P}}
angle_{\mathcal{H}} \end{cases}$$

Expectation is bounded operator

For operator $L_{\mathbb{P}}f:=\mathbb{E}f(X)$ where $X\sim\mathbb{P}$ it holds

$$egin{aligned} |L_{\mathbb{P}}f| &= |\mathbb{E}f(X)| \leq \mathbb{E}|f(X)| \ &= \mathbb{E}|\langle f, k(X, \cdot) \rangle_{\mathcal{H}}| \leq \mathbb{E}\sqrt{k(X, X)} \|f\|_{\mathcal{H}} \end{aligned}$$

Expectation is bounded operator

For operator $L_{\mathbb{P}}f:=\mathbb{E}f(X)$ where $X\sim\mathbb{P}$ it holds

$$egin{aligned} |L_{\mathbb{P}}f| &= |\mathbb{E}f(X)| \leq \mathbb{E}|f(X)| \ &= \mathbb{E}|\langle f, k(X, \cdot) \rangle_{\mathcal{H}}| \leq \mathbb{E}\sqrt{k(X, X)} \|f\|_{\mathcal{H}} \end{aligned}$$

Riesz representation

For all $f \in \mathcal{H}$, there is a $h \in \mathcal{H}$ such that $L_{\mathbb{P}}f = \langle f, h \rangle_{\mathcal{H}}$

$$\implies h(x) = \langle k(x,\cdot), h \rangle_{\mathcal{H}} = L_{\mathbb{P}}k(x,\cdot) = \mathbb{E}k(x,X) = \int k(x,y) \ \mathbb{P}(dy)$$

Expectation is bounded operator

For operator $L_{\mathbb{P}}f:=\mathbb{E}f(X)$ where $X\sim\mathbb{P}$ it holds

$$egin{aligned} |L_{\mathbb{P}}f| &= |\mathbb{E}f(X)| \leq \mathbb{E}|f(X)| \ &= \mathbb{E}|\langle f, k(X, \cdot) \rangle_{\mathcal{H}}| \leq \mathbb{E}\sqrt{k(X, X)} \|f\|_{\mathcal{H}} \end{aligned}$$

Riesz representation

For all $f \in \mathcal{H}$, there is a $h \in \mathcal{H}$ such that $L_{\mathbb{P}}f = \langle f, h \rangle_{\mathcal{H}}$

$$\implies h(x) = \langle k(x,\cdot), h \rangle_{\mathcal{H}} = L_{\mathbb{P}}k(x,\cdot) = \mathbb{E}k(x,X) = \int k(x,y) \ \mathbb{P}(dy)$$

$$\implies h = \int k(\cdot,y) \ \mathbb{P}(dy) = \mu_{\mathbb{P}}$$

Integral Probability Measure (IPM)

$$\gamma[\mathcal{F}, \mathbb{P}, \mathbb{Q}] = \sup_{f \in \mathcal{F}} \left\{ \int_{\mathcal{X}} f(x) \, \mathbb{P}(dx) - \int_{\mathcal{X}} f(x) \, \mathbb{Q}(dx) \right\}$$

where ${\cal F}$ is a space of real-valued bounded measurable functions.

Integral Probability Measure (IPM)

$$\gamma[\mathcal{F}, \mathbb{P}, \mathbb{Q}] = \sup_{f \in \mathcal{F}} \left\{ \int_{\mathcal{X}} f(x) \, \mathbb{P}(dx) - \int_{\mathcal{X}} f(x) \, \mathbb{Q}(dx) \right\}$$

where ${\cal F}$ is a space of real-valued bounded measurable functions.

Maximum Mean Discrepancy

IPM on
$$\mathcal{F} = \{f | \|f\|_{\mathcal{H}} \leq 1\}$$
 where \mathcal{H} is a RKHS

$$\begin{split} \mathsf{MMD}[\mathcal{H},\mathbb{P},\mathbb{Q}] &= \sup_{\|f\| \leq 1} \left\{ \int_{\mathcal{X}} f(x) \; \mathbb{P}(dx) - \int_{\mathcal{X}} f(x) \; \mathbb{Q}(dx) \right\} \\ &= \sup_{\|f\| \leq 1} \left\{ \left\langle f, \int_{\mathcal{X}} k(x,\cdot) \; \mathbb{P}(dx) \right\rangle - \left\langle f, \int_{\mathcal{X}} k(x,\cdot) \; \mathbb{Q}(dx) \right\rangle \right\} \\ &= \sup_{\|f\| \leq 1} \left\{ \left\langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \right\rangle \right\} \\ &= \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}} \end{split}$$

Relating Distance to Expectation

If $X \sim \mathbb{P}$, then

$$\|\mu_{\mathbb{P}}\|_{\mathcal{H}}^2 = \langle \mathbb{E}k(X,\cdot), \, \mu_{\mathbb{P}} \rangle_{\mathcal{H}} = \mathbb{E}k(X,\tilde{X}),$$

where \tilde{X} is an independent copy of X.

Relating Distance to Expectation

If $X \sim \mathbb{P}$, then

$$\|\mu_{\mathbb{P}}\|_{\mathcal{H}}^2 = \langle \mathbb{E}k(X,\cdot), \, \mu_{\mathbb{P}} \rangle_{\mathcal{H}} = \mathbb{E}k(X,\tilde{X}),$$

where \tilde{X} is an independent copy of X.

$$\begin{aligned} \mathsf{MMD}[\mathcal{H}, \mathbb{P}, \mathbb{Q}]^2 &= \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}^2 \\ &= \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} \\ &= \|\mu_{\mathbb{P}}\|_{\mathcal{H}}^2 - 2\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}} + \|\mu_{\mathbb{Q}}\|_{\mathcal{H}}^2 \\ &= \mathbb{E}k(X, \tilde{X}) - 2\mathbb{E}k(X, Y) + \mathbb{E}k(Y, \tilde{Y}), \end{aligned}$$

where $X, \tilde{X} \sim \mathbb{P}$ and $Y, \tilde{Y} \sim \mathbb{Q}$ are independent copies.

Copula Estimation via MMD

Approach

Minimize

$$egin{align} \mathsf{MMD}[\mathcal{F},\hat{\mathbb{P}}_n,\mathbb{P}_{ heta}]^2 &= \int k(u,v) \; \mathbb{P}_{ heta}(du) \mathbb{P}_{ heta}(dv) \ &- 2 \int k(u,v) \; \mathbb{P}_{ heta}(du) \hat{\mathbb{P}}_n(dv) \ &+ \int k(u,v) \; \hat{\mathbb{P}}_n(du) \hat{\mathbb{P}}_n(dv) \end{aligned}$$

$$\mathsf{MMD}[\mathcal{H},\mathbb{P},\mathbb{Q}]^2 = \mathbb{E} k(X,\tilde{X}) - 2\mathbb{E} k(X,Y) + \mathbb{E} k(Y,\tilde{Y})$$

Empirical Measure for Pseudoobserverations

$$\hat{\mathbb{P}}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\hat{U}_i}$$

Estimator

$$\hat{\theta}_n = \arg\min_{\theta \in \Theta} \left\{ \int k(u, v) \; \mathbb{P}_{\theta}(du) \mathbb{P}_{\theta}(dv) - \frac{2}{n} \sum_{i=1}^n \int k(u, \hat{U}_i) \mathbb{P}(du) \right\}$$

Non-asymptotic guarantees

Let $k \in C^2([0,1]^d)$. Then, with probability $1 - \delta - \nu \in (0,1)$ where $\delta, \nu > 0$

$$\begin{split} \mathsf{MMD}[\mathcal{F}, \mathbb{P}_{\hat{\theta}_n}, \mathbb{P}_0] &\leq \inf_{\theta \in \Theta} \mathsf{MMD}[\mathcal{F}, \mathbb{P}_{\theta}, \mathbb{P}_0] \\ &+ \left(\frac{8}{n} \sup_{u \in [0,1]^d} k(u,v) \right)^{1/2} \Big\{ 1 + \sqrt{-\log \delta} \Big\} \\ &+ \left(\frac{4d^2}{n} \|d^{(2)}k\|_{\infty} \log \frac{2d}{\nu} \right)^{1/2} \end{split}$$

Under suitable conditions we have

(a) Strong Consistency

$$\hat{\theta}_n \overset{\mathbb{P}_{0}\text{-a.s.}}{\longrightarrow} \theta_0 \quad \text{as } n \to \infty$$

(b) Asymptotic Normality

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \Sigma)$$
 as $n \to \infty$,

where Σ is the asymptotic covariance matrix of the limiting distribution.

References

- P. Alquier, B.-E. Chérief-Abdellatif, A. Derumigny, and J.-D. Fermanian. Estimation of copulas via maximum mean discrepancy. 2020.
- K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf. Kernel mean embedding of distributions: A review and beyond. Foundations and Trends® in Machine Learning, 10(1-2):1–141, 2017. ISSN 1935-8245. doi: 10.1561/2200000060. URL http://dx.doi.org/10.1561/2200000060.