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1 Preliminaries
Since this paper heavily relies on the following terms, let us recall the following definitons.

Definition 1.1 (Copulas (see [4]))
A two-dimensional copula is a function C : I2 → I, where I = [0, 1], with the following
properties:

1. For every (u, v) ∈ I2, it holds that

C(u, 0) = C(0, v) = 0

and
C(u, 1) = u and C(1, v) = v.

2. C is 2-increasing, i.e. for every u1, u2, v1, v2 ∈ I with u1 ≤ u2 and v1 ≤ v2, it holds
that

VC
(
[u1, u2]× [v1, v2]

)
= C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v2). (1.1)

We refer to VC in (1.1) as the C-volume of the rectangle [u1, u2]× [v1, v2].

Definition 1.2 (Support of a Copula (see [4]))
Let C be a copula. Then its support S(C) is defined by

S(C) := {A ⊂ I2 : A open and VC(A) = 0}c.

A copula C is said to be singular if it has support S(C) with Lebesgue measure 0, i.e.

λ
(
S(C)

)
= 0.
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2 Copulas with Prescribed Support
In this chapter we will construct singular copulas with a given support by only using
the definition of a copula.

Example 2.1 (see [4])
Let θ ∈ [0, 1] and suppose that the support of the desired copula Cθ is given by the lines
connecting the points (0, 0), (θ, 1) and (θ, 1), (1, 0), i.e. the graph of S(Cθ) looks like this:

0 1

u

0

1

v

Note, that if θ = 1 or θ = 0, we have C1 = M and C0 = W , with M and W denoting
the upper and lower Fréchet-Hoeffding Bounds, respectively. We now use the fact that
in order for Cθ to be a copula, it has to hold that VCθ(B) ≥ 0 for all rectangles B ⊂ I2

and that a rectangle not intersecting the graph of the support has a Cθ-volume of 0. For
(u, v) ∈ I2, there are three cases to consider:
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1. u ≤ θv,
i.e. (u, v) lies above the left segment of the graph. Then,

Cθ(u, v) = VCθ([0, u]× [0, v])
= VCθ([0, u]× [0, v]) + VCθ([0, u]× [v, 1])︸ ︷︷ ︸

=0

= VCθ([0, u]× [0, 1])
= Cθ(u, 1)
= u

2. u > θv and u < 1− (1− v)θ,
i.e (u, v) lies below both segments of the graph. Then, by using the same tricks as
before, we get

Cθ(u, v) = VCθ([0, u]× [0, v])
= VCθ([0, θv]× [0, v]) + VCθ([θv, u]× [0, v])︸ ︷︷ ︸

=0

= Cθ(θv, v)
= VCθ([0, θv]× [0, v])
= VCθ([0, θv]× [0, v]) + VCθ([0, θv]× [v, 1])︸ ︷︷ ︸

=0

= VCθ([0, θv]× [0, 1])
= Cθ(θv, 1)
= θv

3. u ≥ 1− (1− v)θ,
i.e. (u, v) lies above the second segment of the graph. Here, it holds that

VCθ([u, 1]× [v, 1]) = 0

and
VCθ([u, 1]× [v, 1]) = Cθ(u, v)− u− v + 1,

which results in
Cθ(u, v) = u+ v − 1.

The resulting copula Cθ is given by:

Cθ(u, v) =


u , if 0 ≤ u ≤ θv ≤ θ

θv , if 0 ≤ θv < u < 1− (1− θ)v
u+ v − 1, if θ ≤ 1− (1− θ)v ≤ u ≤ 1

Next, we want to construct a symmtric copula.
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Example 2.2 (see [4])
Let the prescribed support be given by the set

S(C) := {(u, v) ∈ I2 : u2 + v2 = 2u} ∪ {(u, v) ∈ I2 : u2 + v2 = 2v},

whose graph looks like this:

0 1

u

0

1

v

Again, we have to consider different cases. First, let u2 +v2 > 2 min(u, v), i.e. (u, v) lies
above or below the upper and lower quarter circle, respectively. Since for u2 + v2 > 2u it
must hold that

VC([0, u]× [v, 1]) = u− C(u, v) != 0,

we have
C(u, v) = u (2.1)

and analogue for u2 + v2 > 2v:
C(u, v) = v.

With the Fréchet-Hoeffding upper boundary we get

C(u, v) ≤M(u, v) := min(u, v) ⇒ C(u, v) = M(u, v).

Next let (u, v) lie below the upper quarter circle but above the diagonal. That is, u ≤ v
and u2 + v2 ≤ 2u. Here, it must hold that

VC([u, v]× [u, v]) = 0 ⇔ C(u, v) + C(v, u) = C(u, u) + C(v, v)

and since we have symmetry

2C(u, v) = C(u, u) + C(v, v). (2.2)
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The same holds for v ≤ u and u2 + v2 ≤ 2v.
Now, assume u2 + v2 = 2u, i.e. (u, v) lies on the upper quarter circle (again, it works
similar for the lower quarter circle). By continuity, (2.1) and (2.2), we get

u = C(u, v) = 1
2
(
C(u, u) + C(v, v)

)
,

which is equivalent to
C(u, u) + C(v, v) = 2u = u2 + v2.

This can be solved by
C(u, u) = u2

for any u ∈ I, resulting in

C(u, v) = min
(
u, v,

u2 + v2

2

)
, ∀(u, v) ∈ I2.

6



3 Ordinal Sums
Definition 3.1 (see [4])
Let K be a (possibly) finite index set, {Jk}k∈K a partition of I with Jk = [ak, bk], for
k ∈ K, and {Ck}k∈K a collection of copulas. Then the ordinal sum of {Ck}k∈K w.r.t.
{Jk}k∈K is defined by

C(u, v) =


ak + (bk − ak)Ck

(
u−ak
bk−ak

, v−ak
bk−ak

)
, if (u, v) ∈ J2

k

M(u, v), if (u, v) /∈ J2
k .

One can easily verify that an ordinal sum is a copula: Let C be defined as above and
u = 0, then either

C(0, v) = 0 + (bk − 0)Ck
(

0, v − 0
bk − 0

)
or

C(0, v) = M(0, v) = 0.
The same holds, if v = 0. If u = 1, then either

C(1, v) = ak + (1− ak)Ck
(

1, v − ak1− ak

)

= ak + (1− ak)
v − ak
1− ak

= v

or
C(1, v) = M(1, v) = 1

and, again, it works analogue for v = 1.

Theorem 3.2 (see [4])
Let C be a copula. Then C is an ordinal sum if and only if there exists a t ∈ (0, 1) sucht
that C(t, t) = t.

Proof. ”⇒” For any k ∈ K, take t = ak or t = bk to obtain

C(ak, ak) = ak + (bk − ak)Ck(0, 0) = ak

or C(bk, bk) = bk, respectively.
”⇐” Assume ∃t ∈ (0, 1) such that C(t, t) = t. Define for (u, v) ∈ I2

C1(u, v) := C(tu, tv)
t
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and

C2(u, v) :=
C
(
t+ (1− t)u, t+ (1− t)v

)
1− t .

Then C1 and C2 are copulas and C is the ordinal sum of {C1, C2} w.r.t {[0, t], [t, 1]}.
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4 Shuffles of M
The term ’shuffles of M ’ describes copulas that have a support consisting of line seg-
ments with slope −1 or 1. An informal way to construct this kind of copulas can be
described as follows:

The mass distribution for a shuffle of M can be obtained by (1) placing the mass for
M on I2, (2) cutting I2 vertically into a finite number of strips, (3) shuffling the strips
with perhaps some of them flipped around their vertical axes of symmetry, and then (4)
reassembling them to form the square again. The resulting mass distribution will corre-
spond to a copula called a shuffle of M (see [2]).

Formally, let n ∈ N, {Ji}i=1,...,n a partition of I, π a permutation on Sn = {1, ..., n}
and ω a function with ω : Sn → {−1, 1}. The resulting shuffle of M is then denoted by

M
(
n, {Ji}i=1,...,n, π, ω

)
(see [4]). If ω ≡ 1, we call the resulting copula a straight shuffle, if ω ≡ −1, we call it a
flipped shuffle.
Note, that

W = M
(
1, [0, 1], id,−1

)
.

Shuffles of M offer some interesting properties that are worth mentioning. For this
we first introduce the term mutually completely dependent which can be seen as the
opposite of stochastic independence.
Definition 4.1 (see [4])
Let X, Y be two random variables. Then X and Y are called mutually completely
dependent, if there exists a bijective function φ such that P(X = φ(Y )) = 1

Now, let the copula of some random variables X, Y be given by a shuffle of M .
Then X and Y are mutually completely dependent, since the support of any shuffle of
M is the graph of a bijective function (see [4]). The next theorem shows that we can
use joint distribution functions of mutually completely dependent random variables to
approximate a joint distribution of independent random variables with the same margin
distributions arbitrarily closely. In other words, we can approximate any copula by a
shuffle of M with an approximation error not greater than any ε > 0.
Theorem 4.2 (see [4])
For any ε > 0 and any copula C, there exists a shuffle of M , denoted by Cε, such that

sup
u,v∈I
|Cε(u, v)− C(u, v)| < ε.
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Proof. We proof this theorem for C ≡ Π, where Π is the product copula. The proof for
an arbitrary C works similar, see [2].
Let ε > 0 and m ∈ N such that m ≥ 4/ε. Following from Theorem 2.2.4 in [4] we have

|u1,−v1| <
1
m

and |u2,−v2| <
1
m
⇒ |C(u1, u2)− C(v1, v2)| < ε

2 .

Now, define Cε = M(n, {Ji}i=1,...,n, π, ω) where n = m2, {Ji}i=1,...,n is the partition
of I into n subintervals with equal length, π is the permutation defined by π(m(j −
1) + k) = m(k − 1) + j for k, j = 1, ...,m and ω is arbitrary. Then VCε

(
[0, p/m] ×

[0, q/m]
)

= VΠ
(
[0, p/m] × [0, q/m]

)
= pq/n for p, q = 0, 1, ...,m which is equivalent to

Cε(p/m, q/m) = Π(p/m, q/m) for p, q = 0, 1, ...,m. Now, let (u, v) ∈ I2, then ∃p, q ∈
{0, 1, ...,m} such that |u− p/m| < 1/m and |v − q/m| < 1/m. Therefore, we have

|Cε(u, v)− Π(u, v)| ≤ |Cε(u, v)− Cε(p/m, q/m)|
+ |Cε(p/m, q/m)− Π(p/m, q/m)|+ |Π(p/m, q/m)− Π(u, v)|
< ε/2 + 0 + ε/2 = ε

Theorem 4.3 (see [4])
Let C be a copula and suppose C(a, b) = θ, where (a, b) ∈ I2 and θ satisfies

max(a+ b− 1, 0) ≤ θ ≤ min(a, b).

Then
CL(u, v) ≤ C(u, v) ≤ CU(u, v)

where
CU = M

(
4, {[0, θ], [θ, a], [a, a+ b− θ], [a+ b− θ, 1]}, (1, 3, 2, 4), 1

)
and

CL = M
(
4, {[0, a− θ], [a− θ, a], [a, 1− b+ θ], [1− b+ θ, 1]}, (4, 2, 3, 1),−1

)
Proof. CU and CL are explicitly given by

CU(u, v) = min
(
u, v, θ + (u− a)+ + (v − b)+

)

and
CL(u, v) = max

(
0, u+ v − 1, θ − (a− u)+ + (b− v)+

)
.

If u ≥ a, then for v ∈ I: 0 ≤ C(u, v) − C(a, v) ≤ u − a and if u < a, then 0 ≤
C(a, v)− C(u, v) ≤ a− u, i.e.

− (a− u)+ ≤ C(u, v)− C(a, v) ≤ (u− a)+.
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Doing the same with the second component gives

− (a− u)+ − (b− v)+ ≤ C(u, v)− C(a, b) ≤ (u− a)+ + (v − b)+

for u, v ∈ I. Since C(a, b) = θ, we get

θ − (a− u)+ − (b− v)+ ≤ C(u, v) ≤ θ + (u− a)+ + (v − b)+

which leads to

W (u, v) ≤ CL(u, v) ≤ C(u, v) ≤ CU(u, v) ≤M(u, v).
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5 Convex Sums
Definition 5.1 (see [4])
Let X be a continous random variable with distribution function F . Let Cx define a
copula for any observation x of X. Then, the function defined by

C(u, v) =
∫
R
Cx(u, v)dF (x)

is a called the convex sum of {Cx}X=x w.r.t. F , where F is called mixing distribution.
If F has a parameter α, we write

Cα(u, v) =
∫
R
Cx(u, v)dFα(x).

The verification that convex sums are copulas is trivial: For u, v, u1, u2, v1, v2 ∈ I with
u1 ≤ u2 and v1 ≤ v2 we have:

(1) C(0, v) =
∫
R
Cx(0, v)dF (x) =

∫
R

0dF (x) = 0 = C(u, 0),

(2) C(1, v) =
∫
R
Cx(1, v)dF (x) =

∫
R
vdF (x) = v · 1 = v,

(3) VC([u1, u2]× [v1, v2]) =
∫
R
VCx([u1, u2]× [v1, v2])dF (x) ≥ 0.

Example 5.2 (see [4])
Let {Cx}X=x be a family of copulas defined by

Cx(u, v) =


M(u, v), if |v − u| ≥ x

W (u, v), if |u+ v − 1| ≥ 1− x
u+ v − x

2 , else

for x ∈ I. Let Fα(x) = xα, α > 0. Then Cα is given by

Cα(u, v) =
∫
I
Cx(u, v)dFα(x)

=
∫
I
Cx(u, v)αxα−1dx

=
|v−u|∫
0

M(u, v)αxα−1dx+
1∫

1−|u+v−1|

W (u, v)αxα−1dx+
1−|u+v−1|∫
v−u

u+ v − x
2 αxα−1dx

= min(u, v)|v − u|α + max(u+ v − 1, 0)
(

1−
(
1− |u+ v − 1|

)α)

+ u+ v

2

((
1− |u+ v − 1|

)α
− |v − u|α

)
− α

2(α + 1)

((
1− |u+ v − 1|

)α+1
− |v − u|α+1

)

12



We now have 4 cases to consider:

1. u ≤ v and u+ v − 1 ≥ 0, i.e. M(u, v) = u and W (u, v) = u+ v − 1,

2. u ≤ v and u+ v − 1 ≤ 0, i.e. M(u, v) = u and W (u, v) = 0,

3. u ≥ v and u+ v − 1 ≥ 0, i.e. M(u, v) = v and W (u, v) = u+ v − 1 and

4. u ≥ v and u+ v − 1 ≤ 0, i.e. M(u, v) = v and W (u, v) = 0.

For the first case we can calculate

Cα(u, v) = u|v − u|α − u+ v

2 |v − u|α + (u+ v − 1)− (u+ v − 1)
(
1− |u+ v − 1|

)α
+ u+ v

2
(
1− |u+ v − 1|

)α
− α

2(α + 1)

((
1− |u+ v − 1|

)α+1
− |v − u|α+1

)

= u− v
2 |v − u|α + (u+ v − 1) + 2− u− v

2
(
1− |u+ v − 1|

)α
− α

2(α + 1)

((
1− |u+ v − 1|

)α+1
− |v − u|α+1

)

= −|v − u|
α+1

2 + (u+ v − 1) + (1− |u+ v − 1|)α+1

2

− α

2(α + 1)

((
1− |u+ v − 1|

)α+1
− |v − u|α+1

)

= (u+ v − 1) +
(

1
2 −

α

2(α + 1)

)((
1− |u+ v − 1|

)α+1
− |v − u|α+1

)

= W (u, v) + 1
2(α + 1)

((
1− |u+ v − 1|

)α+1
− |v − u|α+1

)
.

The other cases are left out since they give the same result.
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6 Copulas with Prescribed Horizontal
and Vertical Sections

First, let us recall the definition of horizontal and vertical sections:

Definition 6.1 (Horizontal and vertical sections (see [4]))
Let C be a copula and let a ∈ I. Then the function C(·, a) : I→ I, t 7→ C(t, a) is called
the horizontal section of C in a and C(a, ·) : I → I, t 7→ C(a, t) is called the vertical
section of C in a.

6.1 Copulas with Linear Sections
We start with a rather trivial case which is that we want to construct a copula C that
has a linear horizontal section. That is, for any (u, v) ∈ I2 we have

C(u, v) = a(v)u+ b(v).

From the boundary conditions we get

0 = C(0, v) = b(v) ⇒ v = C(1, v) = a(v),

which results in C(u, v) = uv. Since this holds also for the vertical section, the only
copula with linear sections is the product copula Π (see [4]).

6.2 Copulas with Quadratic Sections
Let C be a copular an suppose it has a quadratic horizontal section, then for any (u, v) ∈
I2 we have

C(u, v) = a(v)u2 + b(v)u+ c(v).
Again, from boundary conditions we get

0 = C(0, v) = c(v) ⇒ v = C(1, v) = a(v) + b(v).

Now, choose a function ψ such that

ψ(v) = −a(v) ⇒ b(v) = v − a(v) = v + ψ(v).

This results in

C(u, v) = −ψ(v)u2 +
(
v + ψ(v)

)
u = uv + ψ(v)(1− u)u, (6.1)
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where ψ must be chosen such that C is 2-increasing and ψ(1) = ψ(0) = 0 to satisfy a
copula’s boundary conditions (see [4]).

Example 6.2 (see [4])
We want to construct a symmetric copula C with quadratic sections in both u and v. As
a consequence we have

ψ(v) := θv(1− v)

for some constant θ. Now

Cθ(u, v) = uv + θv(1− v)u(1− u),

where. Then the boundary conditions for a copula are satisfied and for a rectangle
[u1, u2]× [v1, v2] ∈ I2 we have

VCθ = [...] = (u2 − u1)(v2 − v1)
(
1 + θ(1− u1 − u2)(1− v1 − v2)

)
,

which is greater or equal than 0 for every (u, v) ∈ I2 if and only if θ ∈ [−1, 1]. This
family of copulas is called Farlie-Gumbel-Morgenstern family and contains all copulas
with quadratic sections in both u and v.

The next reasonable question would be how to generally choose ψ, aside from satisfying
the 2-increasing-criterium and the boundary conditions, in order for (6.1) to be a copula.
An answer to that is given by the following theorem and corollary from [5].

Theorem 6.3 (see [4])
Let ψ be a function with domain I and let C be given by

C(u, v) = uv + ψ(v)u(1− u).

Then C is a copula if and only if

1. ψ(0) = ψ(1) = 0

2. ψ satisfies the Lipschitz condition, i.e. for all v1, v2 ∈ I

|ψ(v2)− ψ(v1)| ≤ |v2 − v1|.

Furthermore, C is absolutely continous.

Proof. The first condition is equivalent to

C(0, v) = C(u, 0) = 0 and C(1, v) = v, C(u, 1) = u

15



Additionally, C is 2-increasing if and only if for all u1, u2, v1, v2 ∈ I, u1 ≤ u2, v1 ≤ v2, it
holds

VC([u1, u2]× [v1, v2]) = u2v2 + ψ(v2)u2(1− u2)− u1v2 − ψ(v2)u1(1− u1)
− u2v1 − ψ(v1)u2(1− u2) + u1v1 + ψ(v1)u1(1− u1)
= (u2 − u1)(v2 − v1) +

(
ψ(v2)− ψ(v1)

)(
u2(1− u2)− u1(1− u1)

)
= (u2 − u1)(v2 − v1) +

(
ψ(v2)− ψ(v1)

)(
(u2 − u1)(1− u1 − u2)

)
= (u2 − u1)

(
(v2 − v1) +

(
ψ(v2)− ψ(v1)

)
(1− u1 − u2)

)
≥ 0

If u1 = u2 or v1 = v2, then VC([u1, u2]× [v1, v2]) = 0 and if u1 +u2 = 1, then VC([u1, u2]×
[v1, v2]) = VΠ([u1, u2] × [v1, v2]) ≥ 0, since the product copula Π is 2-increasing. So,
assume u1 < u2 and v1 < v2. Then it has to hold

ψ(v2)− ψ(v1)
v2 − v1

≤ 1
u2 + u1 − 1 ,

if u1 + u2 > 1 and
ψ(v2)− ψ(v1)

v2 − v1
≥ 1
u2 + u1 − 1 ,

if u1 + u2 < 1. Since inf
{

1/(u1 + u2 − 1) : 0 ≤ u1 ≤ u2 ≤ 1, u1 + u2 > 1
}

= 1 and
sup

{
1/(u1 + u2− 1) : 0 ≤ u1 ≤ u2 ≤ 1, u1 + u2 < 1

}
= −1, C is 2-increasing if and only

if
− 1 ≤ ψ(v2)− ψ(v1)

v2 − v1
≤ 1,

which is equivalent to the second condition and implies absolute continuity of ψ, which
in return implies the absolute continuity of C.

Corollary 6.4
The function C as in (6.1) is a copula if and only if the following are satisfied:

1. ψ is absolutely continous on I.

2. |ψ′(v)| > 1 only for a finite number of v ∈ I.

3. |ψ(v)| ≤M(v, 1− v) for all v ∈ I.

6.3 Copulas with Cubic Sections
Since the construction of copulas with cubic sections is just an extended version of the
construction of quadratic sections, the results will not be proven, but, for those who are
interested, can be looked up in [3].
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If C is a copula with cubic horizontal section, then

C(u, v) = a(v)u3 + b(v)u2 + c(v)u+ d(v)

and, once again, with boundary conditions we get

d(v) = 0 ⇒ c(v) = v − a(v)− b(v).

Let α(v) = −a(v)− b(v) and β(v) = −2a(v)− b(v) with α(0) = α(1) = β(0) = β(1) = 0,
then

C(u, v) = uv + u(1− u)
(
α(v)(1− u) + β(v)u

)
(see [4]).

Again, the question arises how to choose α and β and it will be answered by the next
theorem.

Theorem 6.5 (see [4])
Let α, β be two functions with domain I satisfying α(0) = α(1) = β(0) = β(1) = 0 and
let C be given by

C(u, v) = uv + u(1− u)
(
α(v)(1− u) + β(v)u

)
.

Then C is a copula, if and only if

1. α and β are absolutely continous.

2. For almost all v ∈ I, either

− 1 ≤ α′(v) ≤ 2 and − 2 ≤ β′(v) ≤ 1

or (
α′(v)

)2
− α′(v)β′(v) +

(
β′(v)

)2
− 3α′(v) + 3β′(v) ≤ 0.

Furthermore, C is absolutely continous.

We now want to find all copulas that have both cubic horizontal sections and vertical
sections. That is, copulas satisfying:

C(u, v) = uv + u(1− u)
(
α(v)(1− u) + β(v)u

)
(6.2)

and
C(u, v) = uv + v(1− v)

(
γ(u)(1− v) + ε(u)v

)
. (6.3)

with γ,ε satisfying the same conditions as α, β.

Theorem 6.6 (see [4])
Suppose that a copula C has cubic sections in both u and v, i.e. C is given by both (6.2)
and (6.3). Then

C(u, v) = uv + uv(1− u)(1− v)
(
A1v(1− u) + A2(1− v)(1− u)

+B1uv +B2u(1− v)
)
,
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where A1, A2, B1, B2 ∈ R such that for all (x, y) ∈
{

(A2, A1), (B1, B2), (B1, A1), (A2, B2)
}

− 1 ≤ x ≤ 2 and − 2 ≤ y ≤ 1

or
x2 − xy + y2 − 3x+ 3y ≤ 0.

With this result we can find an explicit expression of α, β, γ and ε:
Using (6.2) we get(
α(v)(1− u) + β(v)u

)
= v(1− v)

(
A1v(1− u) + A2(1− v)(1− u) +B1uv +B2u(1− v)

)
⇔(

α(v)(1− u) + β(v)u
)

= v(1− v)
((
A1v + A2(1− v)

)
(1− u) +

(
B1v +B2(1− v)

)
u

)

which gives

α(v) = v(1− v)
(
A1v + A2(1− v)

)
,

β(v) = v(1− v)
(
B1v +B2(1− v)

)
and similarily for γ and ε

γ(u) = u(1− u)
(
B2u+ A2(1− u)

)
,

ε(u) = u(1− u)
(
B1u+ A1(1− u)

)
(see [4]).

Example 6.7 (see [4])
Let a, b be constants such that b ∈ [−1, 2], |a| ≤ b + 1 for each b ∈ [−1, 1/2] and
|a| ≤ (6b− 3b2)1/2 for each b ∈ [1/2, 2]. Now, set A1 = B2 = a− b and A2 = B1 = a+ b
which satisfy the previos theorem’s conditions. Then, we have

α(v) = v(1− v)(a+ b− 2bv),
β(v) = v(1− v)(a− b+ 2bv)

and γ ≡ α, ε ≡ β. The resulting copula is given by

Ca,b(u, v) = uv + u(1− u)
(
α(v)(1− u) + β(v)u

)
= uv + uv(1− u)(1− v)

(
a+ b(1− 2v)(1− u) + b(2v − 1)u

)
= uv + uv(1− u)(1− v)

(
a+ b(1− 2u)(1− 2v)

)
.

Note that Ca,0 gives the Farlie-Gumbel-Morgenstern family from the previous section.
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7 Copulas with Prescribed Diagonal
Sections

Before we start, we recall the definition of diagonal sections and the dual of a copula:

Definition 7.1 (see [4])
Let C be a copula. Then δC : I → I, δC(t) := C(t, t) is called the diagonal section of C
and the dual of C is given by the function

δ̃C : I→ I δ̃C(t) = 2t− δC(t).

Diagonal sections have an interesting property. We can explicitly give the distribution
function of the order statistics max(X, Y ) and min(X, Y ) where X and Y are random
variables having a common distribution F and copula C (see [4]): following from Sklar’s
theorem, we have

P
(
max(X, Y ) ≤ t

)
= P(X ≤ t, Y ≤ t) = C

(
F (t), F (t)

)
= δC

(
F (t)

)
and

P
(
min(X, Y ) ≤ t

)
= P(X ≤ t) + P(Y ≤ t)− P(X ≤ t, Y ≤ t)

= 2F (t)− δC
(
F (t)

)
= δ̃C

(
F (t)

)
.

Before we move on, let us characterize what we mean when we simply speak of diag-
onals:

Definition 7.2 (see [4])
A function δ : I→ I is called a diagonal if it satisfies the following three properties:

(1) δ(1) = 1,

(2) 0 ≤ δ(t2)− δ(t1) ≤ 2(t2 − t1), for any t1, t2 ∈ I, t1 ≤ t2,

(3) δ(t) ≤ t for any t ∈ I.

With every diagonal we can construct a so called diagonal copula:

Theorem 7.3 (see [4])
Let δ be any diagonal and set

C(u, v) := min
(
u, v,

1
2
(
δ(u) + δ(v)

))
.

Then C is a copula whose diagonal section is δ.
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The proof of this theorem is rather technical and left out here, but it can be found in
[1]. We conclude this thesis by a theorem that can give us the joint distribution function
of the order statistics.

Theorem 7.4 (see [4])
Suppose X and Y are continous random variables with copula C and a common marginal
distribution. Then the joint distribution function of min(X, Y ) and max(X, Y ) is the
Fréchet-Hoeffding upper bound M if and only if C is a diagonal copula.

Proof. Using Sklar’s theorem, we can assume that X and Y have the copula C as joint
distribution function and then show the equivalence of C being a diagonal copula and
the joint distribution function of min(X, Y ) and max(X, Y ) being M . Let H(z, z̃) be the
joint distribution of Z = max(X, Y ) and Z̃ = min(X, Y ). As we have shown above, the
distributions of Z and Z̃ are the diagonal section δC and the dual of C δ̃C , respectively.
Setting δ = δC gives

H(z, z̃) = P
(
max(X, Y ) ≤ z,min(X, Y ) ≤ z̃

)
=

δ(z), if z ≤ z̃,

C(z, z̃) + C(z̃, z)− δ(z̃), if z ≥ z̃.

”⇐” Assume C is a diagonal copula. Then, if z ≥ z̃

H(z, z̃) = 2C(z, z̃)− δ(z̃) = min
(
2z̃ − δ(z̃), δ(z)

)
= min

(
δ̃(z̃), δ(z)

)
.

If z < z̃, then δ(z) = min
(
δ̃(z̃), δ(z)

)
since δ(z) ≤ δ(z̃) ≤ z̃ ≤ δ̃(z̃). This gives

H(z, z̃) = M
(
δ(z), δ̃(z̃)

)
.

”⇒” Assume H(z, z̃) = M
(
δ(z), δ̃(z̃)

)
. Here, we assume C to be symmetric (for a

general proof see [1]). If z > z̃, then

2C(z, z̃)− δ(z̃) = M
(
δ(z), δ̃(z̃)

)
= min

(
2z̃ − δ(z̃), δ(z)

)
and thus

C(z, z̃) = min
(
z̃,

1
2
(
δ(z) + δ(z̃)

))
.

Since we assumed C to be symmetric, we have

C(z, z̃) = min
(
z,

1
2
(
δ(z) + δ(z̃)

))

for z ≤ z̃, which completes the proof.
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[5] Quesada-Molina, JJ and Rodŕıguez-Lallena, JA: Bivariate copulas with quadratic
sections. Journaltitle of Nonparametric Statistics, 5(4):323–337, 1995.

21


	Preliminaries
	Copulas with Prescribed Support
	Ordinal Sums
	Shuffles of M
	Convex Sums
	Copulas with Prescribed Horizontal and Vertical Sections
	Copulas with Linear Sections
	Copulas with Quadratic Sections
	Copulas with Cubic Sections

	Copulas with Prescribed Diagonal Sections

