Implicit linear difference equation over a non-Archimedean ring

A.B. Goncharuk

Let us consider the difference equation

$$a_m x_{n+m} + \ldots + a_1 x_{n+1} + a_0 x_n = f_n, \ n = 0, 1, 2, \ldots$$

We are looking for the sequence $\{x_n\}$ that satisfies this equation.

Note that for any field F, if $a_m, \ldots, a_0 \in F$ and $f_n \in F$ for any n, it surely has infinitely many solutions over F – one for each initial value x_0, x_1, \ldots, x_m . The interesting question appears for some ring K in the case that a_m is non-invertible. We are looking for the solution that belongs to K supposed all the coefficients a_i and the nonhomogeneity f_n belong to K. Is there at least one solution in this ring? How many solutions there are? How to find this solution?

The talk is devoted to this question in the case K is a valuation ring of some field with a non-Archimedean valuation. It is an important case, because finding a solution of our equation considered over two important rings – the ring of integers and the ring of polynomials – in many cases reduces to finding the solution in this class of non-Archimedean rings.