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Abstract

We prove a functional central limit theorem for integrals
∫
W
f(X(t)) dt, where (X(t))t∈Rd is a

stationary mixing random field and the stochastic process is indexed by the function f , as the inte-
gration domain W grows in Van Hove-sense. We discuss properties of the covariance function of the
asymptotic Gaussian process.
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1 Introduction

A random field is a collection of random variables, indexed by the points of the Euclidean space. Random
fields have applications in various branches of science, e.g. in medicine [1, 25], in geostatistics [5, 27] or
in materials science [15, 26].

Central limit theorems for Lebesgue integrals have been studied for a long time. In the 1970’s first
central limit theorems for integrals of the form

∫
Wn

X(t) dt were shown [3, 14], where (X(t))t∈Rd is a

random field and the integration domains Wn tend to Rd in an appropriate way (see Section 3).
Meschenmoser and Shashkin [16] showed a functional central limit theorem for Lebesgue measures

of excursion sets of random fields, where the stochastic process is indexed by the level of the excursion
set. The Lebesgue measure of the excursion set equals

∫
Wn

1[u,∞)(X(t)) dt, where u is the level. We will

extend the result of [16] to a functional central limit theorem for
∫
Wn

f(X(t)) dt, where the stochastic
process is indexed by the function f , which is assumed to be Lipschitz continuous. While replacing
indicator functions by Lipschitz continuous functions is straight-forward, we need an entirely different
approach, since the index set of the stochastic process is much larger now (it is the real line in [16] and
the space of Lipschitz continuous functions in the present paper). For a survey on other limit theorems
for random fields, see [22].

We will study the covariance function of the asymptotic Gaussian process. This covariance function
is a symmetric non-negative definite bilinear form. For a certain class of random fields we will present
infinite sequences of functions which are orthogonal w.r.t. this bilinear form. While for this class of fields
we can show that the asymptotic variance vanishes only for functions that are constant a.e. (w.r.t. the
marginal distribution of the random field), we will construct a non-trivial random field for which this
bilinear form vanishes identically.

This paper is organized as follows. In Section 2, we collect preliminaries about mixing random fields
and orthogonal polynomials, in particular Lévy-Meixner systems. We give a multivariate version of the
announced central limit theorem in Section 3. Section 4 is devoted to the examination of the covariance
function of the limiting Gaussian process. Since all results derived in this section can be formulated in
terms of the asymptotic covariance matrix of the multivariate central limit theorem, it is no problem
to do this examination before the functional version is obtained. In Section 5, we derive the functional
central limit theorem.
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2 Preliminaries

In this section, we introduce tools from the theory of mixing random fields and from the theory of
orthogonal polynomials which we will need in later sections.

2.1 Mixing concepts

Let (Ω,A,P) be a probability space and let F ,G ⊆ A be two sub-σ-algebras. Then we define the α-mixing
coefficient by

α(F ,G) := sup{|P(F ∩G)− P(F )P(G)| | F ∈ F , G ∈ G}.

For an Rs-valued random field (X(t))t∈Rd we put

αγ(r) = sup{α(σ(XI), σ(XJ)) | I, J ⊆ Rd, there is u ∈ Rd with ‖u‖ = 1 such that

min{〈u, t〉 | t ∈ I} −max{〈u, t〉 | t ∈ J} > r, λd((I ∪ J) +Bd) ≤ γ},
r ≥ 0, γ ≥ 2κd.

Here σ(XI) is the σ-algebra generated by the random variables Xt, t ∈ I. The Minkowski sum I + Bd

is defined by I + Bd = {i + b | i ∈ I, b ∈ Bd}, Bd := {x ∈ Rd | ‖x‖ ≤ 1} is the d-dimensional closed
Euclidean unit ball and κd := λd(B

d), where λd is the d-dimensional Lebesgue measure. In words, I and
J lie in halfspaces separated by a strip of width r and the parallel volume of I and J at distance 1 does
not exceed γ.

2.2 Lévy-Meixner systems of orthogonal polynomials

We consider a family of probability measures Ψλ, λ ∈ (0,∞), on R such that all moments of these
probability measures exist. For each λ ∈ (0,∞) we let x 7→ Qn(x;λ), n ∈ N0, where N0 = N∪{0}, denote
the sequence of real-valued orthogonal polynomials w.r.t. Ψλ such that x 7→ Qn(x;λ) has degree n and
its leading coefficient is 1. In particular, Q0(x, λ) ≡ 1. Such a sequence exists if and only if the measure
Ψλ is not concentrated on finitely many points. Indeed, if Ψλ is concentrated on n points, n ∈ N, then
the restrictions of more than n functions to these points cannot be linearly independent and hence more
than n functions cannot be orthogonal. On the other hand, no polynomial but the zero polynomial has
norm 0 if Ψλ is not concentrated on finitely many points. Hence, in this case, the desired sequence can
be obtained e.g. by applying the Gram-Schmidt procedure to 1, x, x2, . . . . Obviously the polynomials
Qn(x;λ) are determined uniquely. For a general introduction to orthogonal polynomials see [24] or [21].

Def. 1. A system x 7→ Qn(x;λ), λ ∈ (0,∞), n ∈ N0, of polynomials is called Lévy-Meixner system if

(i) for each λ ∈ (0,∞) there is a probability measure Ψλ on R such that x 7→ Qn(x;λ), n ∈ N0, are
orthogonal w.r.t. Ψλ,

(ii) there are two open sets U, V ⊆ R containing 0 and analytical functions a : V → U , b : U → R, that
fulfill a(0) = 0, a′(0) 6= 0 and b(0) = 1 such that∑

n∈N0

Qn(x;λ)
zn

n!
= b−λ(a(z)) exp(x · a(z)), x ∈ R, λ > 0, z ∈ V.

The measures Ψλ appearing in this definition are determined uniquely if their moment generating
function exists in a neighborhood of 0. Indeed, two probability measures on R which have the same
system of orthogonal polynomials must also have the same sequence of moments, since the monomials
xn, n ∈ N0, can be written as linear combinations of orthogonal polynomials in a unique way and the
moments can be identified as appropriate coefficients of this linear combinations. It is well known (see e.g.
[10, § II.5]) that a probability measure is uniquely determined by its sequence of moments if its moment
generating function is finite in a neighborhood of 0.

Since the probability measures Ψλ are determined uniquely, we may call the sets {Ψλ | λ ∈ (0,∞)}
Lévy-Meixner systems as well.

By [21, p. 52] we have the following lemma:
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Lemma 2. Under the assumptions of Definition 1, the moment generating function of Ψλ is t 7→ bλ(t).

We conclude from this lemma that probability distributions corresponding to Lévy-Meixner systems
are always infinitely divisible.

Moreover, Lemma 2 implies that
∑
i∈J Vi ∼ ΨλJ for a finite collection of independent random variables

Vi ∼ Ψλi , i ∈ J , where λJ :=
∑
i∈J λi.

The Lévy-Meixner systems will turn out to belong either to one of four well-known families of prob-
ability distributions or to one exotic family. These exotic distributions are called Meixner cosine hyper-
bolic-distribution, Mch(a, µ), a ∈ (−π, π), µ > 0, and their characteristic function is given by

φ(u) =
( cos(a/2)

cosh((u− ia)/2)

)2µ
.

Schoutens [21, p. 57] shows that these distributions have densities

f(x) =
(2 cos(a/2))2µ

2πΓ(2µ)
exp(ax)|Γ(µ+ ix)|2, x ∈ R.

An affine transformation of a Lévy-Meixner system is again a Lévy-Meixner system. More precisely
we have:

Lemma 3. Let x 7→ Qn(x;λ), n ∈ N0, λ ∈ (0,∞), be a Lévy-Meixner system and let m, c ∈ R, m 6= 0,
be constants. Then x 7→ Qn(mx+ cλ;λ), n ∈ N0, λ ∈ (0,∞), is also a Lévy-Meixner system.

Proof: We have

∞∑
n=0

Qn(mx+ cλ;λ)
zn

n!
=

1

b(a(z))λ
exp

(
(mx+ cλ) · a(z)

)
=

1

b̃(ã(z))λ
exp

(
xã(z)

)
,

where ã(z) := ma(z) and b̃(t) := b( 1
m · t) · exp(−ct/m).

The following theorem is shown in [21, Sec. 4.2 and 4.3].

Theorem 4. Up to the shifts and scalings described by Lemma 3 each Lévy-Meixner system is one of
the following:

Distribution Polynomials

Normal N (µ, σ2) (with constant ratio µ/σ, Hermite
parameterized by σ)

Gamma Γ(1, α) (with constant scale factor λ = 1, (generalized)
parameterized by α− 1) Laguerre

Poisson Pois(λ) Charlier

Pascal P (γ, µ) (with constant single-probability-para- Meixner type-I
meter γ, parameterized by the size-parameter µ)

Meixner cosine Mch(a, µ) (with constant a, parameterized by µ) Pollaczek
hyperbolic

3 The multivariate central limit theorem

In this section, we state a multivariate central limit theorem for Lebesgue integrals of random fields.
A sequence (Wn)n∈N of compact subsets of Rd is called Van Hove-growing (VH-growing) if

lim
n→∞

λd(∂Wn +Bd)/λd(Wn) = 0,

where ∂W denotes the boundary of W .

Theorem 5. Let (X(t))t∈Rd be a stationary, measurable R-valued random field. Let f1, . . . , fs : R → R
be measurable functions. Assume that:

(i) There is some δ > 0 with E|fi(X(0))|2+δ <∞, i ∈ {1, . . . , s}.
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(ii)
∫
Rd |Cov(fi(X(0)), fj(X(t)))| dt <∞, i, j = 1, . . . , s.

(iii) There are n ∈ N and C, l > 0 with n/d > l + (2 + δ)/δ such that αγ(r) ≤ Cr−nγl for all γ ≥ 2κd
and r > 0, where aγ(r) is the α-mixing coefficient for (X(t))t∈Rd .

Let (Wn)n∈N be a VH-growing sequence of compact subsets of Rd.
Then (

Φn(f1), . . . ,Φn(fs)
)
n→∞−→ N (0,Σ)

in distribution, where Σ is the matrix with entries σij :=
∫
Rd Cov

(
fi(X(0)), fj(X(t))

)
dt, i, j = 1, . . . , s,

and

Φn(f) =

∫
Wn

f(X(t)) dt− λd(Wn) · E f(X(0))√
λd(Wn)

.

This theorem can be concluded from [11, Remark 1] using the Cramér-Wold device.

4 The asymptotic covariance

In this section we examine the asymptotic covariance matrix Σ appearing in Theorem 5.

4.1 Diagonal form

First we discuss how the functions f1, . . . , fs have to be chosen (depending on the distribution of the
random field (X(t))t∈Rd) such that the asymptotic covariance matrix Σ becomes a diagonal matrix, i.e.
that ∫

Rd
Cov

(
fi(X(0)), fj(X(t))

)
dt = 0, i 6= j. (1)

If Σ is a diagonal matrix, it means that the integrals
∫
Wn

fi(X(t)) dt, i = 1, . . . , s, are “asymptotically
independent”. Moreover, choosing the functions f1, . . . , fs this way reduces the computational effort of
the test from [4] and [12, Sec. 3.5.2] and we hope that this also improves the statistical properties of the
test.

First let us remark that the Gram-Schmidt orthogonalisation procedure is in principle suitable for
this purpose. Consider a space of functions V such that∫

Rd

∣∣Cov
(
f(X(0)), g(X(t))

)∣∣ dt <∞ (2)

for all f, g ∈ V . Then we see from Lemma 6 below that

〈f, g〉 :=

∫
Rd

Cov
(
f(X(0)), g(X(t))

)
dt, f, g ∈ V,

is a symmetric non-negative definite bilinear form. Start with vectors g1, . . . , gs ∈ V that fulfill the
strengthened linear independence condition: If 〈

∑s
i=1 λigi,

∑s
i=1 λigi〉 = 0 for some λ1, . . . , λs ∈ R then

λ1 = · · · = λs = 0. Define inductively

f1 := g1

fj := gj −
j−1∑
k=1

〈gj , fk〉
〈fk, fk〉

fk, j = 2, . . . , s.

The resulting functions fi, i = 1, . . . , s fulfill (1).
The strengthened linear independence condition is the reason why the Gram-Schmidt procedure works

only “in principle”. This condition is hard to check and in Example 10 we construct a random field
(X(t))t∈Rd such that there are no functions g1, . . . , gs fulfilling it.
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Lemma 6. Let (X(t))t∈Rd be a measurable, stationary random field and let f, g : R → R be two mea-
surable functions fulfilling E f(X(0))2 < ∞, E g(X(0))2 < ∞ and (2). Let (Wn)n∈N be a VH-growing
sequence. Then

lim
n→∞

1

λd(Wn)
Cov

(∫
Wn

f(X(t)) dt,

∫
Wn

g(X(t)) dt
)

= 〈f, g〉.

Proof: We have

lim
n→∞

1

λd(Wn)
Cov

(∫
Wn

f(X(t)) dt,

∫
Wn

g(X(t)) dt
)

= lim
n→∞

1

λd(Wn)

∫
Wn

∫
Wn

Cov
(
f(X(s)), g(X(t))

)
dt ds

= lim
n→∞

1

λd(Wn)

∫
Wn

∫
Wn−s

Cov
(
f(X(s)), g(X(t+ s))

)
dt ds

= lim
n→∞

1

λd(Wn)

∫
Wn

∫
Rd

1Wn
(s+ t) Cov

(
f(X(0)), g(X(t))

)
dt ds

= lim
n→∞

1

λd(Wn)

∫
Rd

Cov
(
f(X(0)), g(X(t))

)∫
Wn

1Wn(s+ t) ds dt

= lim
n→∞

∫
Rd

Cov
(
f(X(0)), g(X(t))

)λd(Wn ∩ (Wn − t))
λd(Wn)

dt.

Now the assumption that (Wn)n∈N is VH-growing implies

lim
n→∞

λd(Wn ∩ (Wn − t))
λd(Wn)

= 1;

see [2, Lemma 1.2, p. 172]. Using

λd(Wn ∩ (Wn − t))
λd(Wn)

≤ 1, n ∈ N,

and assumption (2) we can apply the Dominated Convergence Theorem and thus the above expression
equals 〈f, g〉.

Now we will study further examples of functions f1, . . . , fs which make Σ a diagonal matrix. For a
certain class of random fields which are defined using the Lévy-Meixner systems introduced in Section
2.2 we get quite explicit examples.

Example 7. Let Ψλ, λ > 0, be a Lévy-Meixner system. Let Λ be a random signed measure such that

(i) Λ(B) ∼ Ψλd(B) for every Borel set B ⊆ Rd with 0 < λd(B) <∞ and

(ii) Λ(B1) and Λ(B2) are independent, if B1 and B2 are disjoint.

Such a random measure exists by [19, Prop. 2.1(b)] since the family Ψλ, λ > 0, is closed w.r.t.
convolution, cf. [13, Theorem 3.1].

Define a random fieldX byX(t) := Λ(B+t), t ∈ Rd, for a fixed Borel setB ⊆ Rd with 0 < λd(B) <∞.
Let (Qn(·;λ))n∈N0 be the system of orthogonal polynomials w.r.t. Ψλ appearing in Definition 1. Then
[9, Theorem 4.1] implies

Cov
(
Qn(X(t1);λd(B)), Qm(X(t2);λd(B))

)
= 0

if n 6= m and t1, t2 ∈ Rd.

4.2 Non-degenerateness

Now we would like to examine whether the asymptotic variance occurring in Theorem 5 is positive
(more precisely: whether all diagonal entries of the asymptotic covariance matrix Σ are positive). If
this asymptotic variance is zero, we have not chosen the optimal normalization constant in Theorem 5.
Moreover, for the application of the Gram-Schmidt procedure in Section 4.1 it is important to know for
which functions f the asymptotic variance vanishes.
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Proposition 8. Let under the assumptions of Theorem 5 the field (X(t))t∈Rd be

• centered Gaussian with non-negative covariance function or

• one of the fields constructed in Example 7.

Then we have:

1) If Var(
∑s
i=1 uifi(X(0))) > 0 for some u = (u1, . . . , us) ∈ Rs then uTΣu > 0.

2) If Var(fi(X(0))) > 0 then the i-th diagonal entry of Σ is positive.

3) If Var
(∑s

i=1 uifi(X(0))
)

= 0 implies u1 = · · · = us = 0 then Σ is positive definite.

Proof: We only have to show 1), since 2) and 3) are immediate consequences.
Let Ψλ be the distribution of X(0). The system (Qn(x;λ))n∈N0

of orthogonal polynomials of Ψλ is
complete (see Satz 4.2 and Satz 5.2 in [10, § II]). Hence there are constants cn ∈ R, n ∈ N0, with

s∑
i=1

uifi(x) =

∞∑
n=0

cnQn(x;λ),

where the series is L2(Ψλ)-convergent. By [9, Theorem 4.1] we have

Cov
(
Qn(X(0);λ), Qm(X(t);λ)

)
= 0, t ∈ Rd, m 6= n.

So

uTΣu =

∫
Rd

Cov
( s∑
i=1

uifi(X(0)),

s∑
i=1

uifi(X(t))
)
dt

=

∫
Rd

∞∑
n=0

∞∑
m=0

cncm Cov
(
Qn(X(0);λ), Qm(X(t);λ)

)
dt

=

∫
Rd

∞∑
n=0

c2n Cov
(
Qn(X(0);λ), Qn(X(t);λ)

)
dt.

For fixed t ∈ Rd and all n ∈ N0 we have

Cov
(
Qn(X(0);λ), Qn(X(t);λ)

)
≥ 0.

Indeed, there are independent random variables Y1, Y3 ∼ Ψλ1 and Y2 ∼ Ψλ2 for appropriate constants
λ1, λ2 ∈ (0,∞) with λ1 + λ2 = λ such that (X(0), X(t)) = (Y1 + Y2, Y2 + Y3) in distribution. In
case of a Gaussian random field choose Y2 ∼ N (0,Cov(X(0), X(t))) and Y1, Y3 ∼ N (0,Var(X(0)) −
Cov(X(0), X(t))). In the case of a random field constructed in Example 7, put Y1 := Λ(B \ (B + t)),
Y2 := Λ((B + t) ∩B), and Y3 := Λ((B + t) \B), where Λ is the random measure from Example 7. Let
(Qn(x;λi))n∈N0

be the system of orthogonal polynomials of Ψλi , i = 1, 2. From [9, Theorem 3.1] we get

Cov
(
Qn(X(0);λ), Qn(X(t);λ)

)
= Cov

( n∑
i=0

(
n

i

)
Qn−i(Y1;λ1)Qi(Y2;λ2),

n∑
j=0

(
n

j

)
Qn−j(Y3;λ1)Qj(Y2;λ2)

)
=

n∑
i=0

(
n

i

) n∑
j=0

(
n

j

)
E[Qn−i(Y1;λ1)] · E[Qn−j(Y3;λ1)] · Cov(Qi(Y2;λ2), Qj(Y2;λ2))

= Cov(Qn(Y2;λ2), Qn(Y2;λ2))

≥ 0.

Moreover, for n > 0 we have Var(Qn(X(0);λ)) > 0. Since (Qn(X(t);λ))t∈Rd is a measurable, stationary
and square-integrable random field, one can show – using arguments from the proof of [18, Prop. 3.1] –
that it is continuous in 2-mean. So for t sufficiently close to 0 we get

Cov
(
Qn(X(0);λ), Qn(X(t);λ)

)
> 0.
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ξit

ξj

t

The value of the field X in t is the fraction of the volume of the Voronoi cell covered by the grey circle.

Figure 1: The definition of X(t) in Example 10

Since cn = 0 for all n > 0 would imply
∑s
i=1 uifi(x) = c0 for Ψλ-almost all x ∈ R, which contradicts the

assumption, we have cn0
6= 0 for at least one n0 > 0 and hence∫

Rd

∞∑
n=0

c2n Cov
(
Qn(X(0);λ),Qn(X(t);λ)

)
dt

=

∞∑
n=0

c2n

∫
Rd

Cov
(
Qn(X(0);λ), Qn(X(t);λ)

)
dt

≥ c2n0

∫
Rd

Cov
(
Qn0(X(0);λ), Qn0(X(t);λ)

)
dt > 0.

So uTΣu > 0.

Corollary 9. Let (X(t))t∈Rd be a random field fulfilling the assumptions of Proposition 8. Let f1, . . . , fs :
R→ R be polynomials such that f0, . . . , fs are linearly independent together with the constant polynomial
f0(x) := 1. Then Σ is positive definite.

Proof: Let (u1, . . . , us) ∈ Rs \ {0}. Then
∑s
i=1 uifi(x) is a polynomial, but not constant. Thus, for any

fixed c ∈ R there are only finitely many x ∈ R with
∑s
i=1 uifi(x) = c. Since X(0) is not concentrated

on finitely many values (see Section 2.2), we get Var(
∑s
i=1 uifi(X(0))) > 0. Thus Proposition 8 part 3)

implies that Σ is positive definite.

However, the asymptotic variance is not always positive. Indeed, we can construct a non-trivial field
fulfilling the assumptions of Theorem 5, such that the asymptotic variance vanishes for all functions f
simultaneously.

Example 10. Let Y = (ξi)i∈N be a stationary Poisson process on Rd with intensity 1. Consider the
Voronoi mosaic generated by Y , i.e. the system of sets

C(ξi, Y ) := {v ∈ Rd | ‖v − ξi‖ ≤ ‖v − ξj‖, j 6= i}.

Now every point t ∈ Rd is contained in exactly one of the cells C(ξi, Y ) with probability one; we denote
the corresponding point of the point process by ξit . Now we define

X(t) := λd({v ∈ C(ξit , Y ) | ‖v − ξit‖ ≤ ‖t− ξit‖})/λd(C(ξit , Y )), t ∈ Rd.

So each point t ∈ Rd is assigned the proportion of the Voronoi cell it lies in that is closer to the
nucleus than t, see Figure 1. Clearly, 0 ≤ X(t) ≤ 1 for t ∈ Rd.

Now the field (X(t))t∈Rd is obviously measurable and strictly stationary. Also other assumptions of
Theorem 5 are fulfilled for measurable and bounded functions f1, . . . , fs : [0, 1]→ R. Indeed, assumption
(i) is trivial. In order to check assumption (iii), we let I, J ⊆ Rd be two sets lying in halfspaces separated
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by a strip of width r ≥ 15 and fulfilling λd((I ∪ J) + Bd) ≤ γ. Then I ∪ J can intersect at most
N := bγ/dd/2c cells of the lattice 1√

d
Zd, i.e. at most N sets of the form(j1 − 1√

d
,
j1√
d

]
× · · · ×

(jd − 1√
d
,
jd√
d

]
, j1, . . . , jd ∈ Z.

Since such a cell can be covered by one ball of radius R := r/30, there are N balls of radius R covering

I ∪ J . Say I ⊆
⋃M
i=1BR(xi) and J ⊆

⋃N
i=M+1BR(xi). There are configurations of Y|B15R(xi) that fully

determine the field (X(t))t∈BR(xi) and there are configurations for which (X(t))t∈BR(xi) also depends on
Y|Rd\B15R(xi), where X|M and f|M denote the restriction of a stochastic process X and a function f to
a subset M of its index set or its domain. In order to make this precise, we have to observe that every
locally finite counting measure y on Rd induces a function x : Rd → R by the construction explained
in the beginning of this example. So let ER,i denote the event that there is a point configuration y on
Rd with y|B15R(xi) = Y|B15R(xi) for which the induced function x does not coincide with X on BR(xi),
x|BR(xi) 6= X|BR(xi). Notice that this definition only makes sense as long as I, J and γ are fixed. It is
shown in [20, p. 515] that

P(ER,i) ≤ (1 +md)e
−κdRd , i = 1, . . . , N,

for some constant md depending only on d (notice that if we replace the constant 15 in the inequality
r ≥ 15 by any smaller number then [20] does not yield this bound anymore).

Recall that σ(XK) denotes the σ-algebra generated by the random variables Xt, t ∈ K, for K ⊆ Rd.
For any set A ∈ σ(X∪Mi=1BR(xi)) and B ∈ σ(X∪Ni=M+1BR(xi)) the event A∩

(⋃M
i=1ER,i

)c
is σ(Y∪Mi=1B15R(xi))-

measurable, while B ∩
(⋃N

i=M+1ER,i
)c

is σ(Y∪Ni=M+1B15R(xi))-measurable. Since

Y ∩
M⋃
i=1

B15R(xi) ∩
N⋃

i=M+1

B15R(xi) = ∅ a.s.,

the events A ∩
(⋃M

i=1ER,i
)c

and B ∩
(⋃N

i=M+1ER,i
)c

are independent and therefore

|P(A ∩B)− P(A)P(B)|

≤
∣∣∣∣P(A ∩B ∩ ( N⋃

i=1

ER,i

)c)
− P

(
A ∩

( M⋃
i=1

ER,i

)c)
· P
(
B ∩

( N⋃
i=M+1

ER,i

)c)∣∣∣∣
+2NP(ER,1)

≤ 2N(1 +md)e
−κdRd .

Since this inequality holds for all admissible choices of I,J , A and B, we get

αγ(r) ≤ 2 γ
dd/2

(1 +md)e
−κdrd/30d

and thus condition (iii) is fulfilled.
Moreover, we have ∫

Rd

∣∣Cov
(
f(X(0)), g(X(t))

)∣∣ dt <∞ (3)

for any bounded, measurable functions f, g : [0, 1] → R. For any point t ∈ Rd let E(0) and E(t) be the
events ER,i defined above with xi = 0 and xi = t respectively and with R = ‖t‖/30. Put

S := sup{|f(x)|, |g(x)| | x ∈ [0, 1]}.

We have ∣∣Cov
(
f(X(0))1E(0)

, g(X(t))1(E(t))c
)∣∣ =

∣∣E[f(X(0))1E(0)
· g(X(t))1(E(t))c

]
− E

[
f(X(0))1E(0)

]
· E
[
g(X(t))1(E(t))c

]∣∣
≤ E

[
S2 · 1E(0)

]
+ E

[
S · 1E(0)

]
· S

= 2S2 · P(E(0)),
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the same way ∣∣Cov
(
f(X(0))1(E(0))c , g(X(t))1E(t)

)∣∣ ≤ 2S2 · P(E(t))

and ∣∣Cov
(
f(X(0))1E(0)

, g(X(t))1E(t)

)∣∣ =
∣∣E[f(X(0))1E(0)

· g(X(t))1E(t)

]
− E

[
f(X(0))1E(0)

]
· E
[
g(X(t))1E(t)

]∣∣
≤ E

[
S2 · 1E(0)

· 1E(t)

]
+ E

[
S · 1E(0)

]
· E
[
S1E(t)

]
= 2S2 · P(E(0)) · P(E(t)).

Moreover, observe that there are measurable functions f̃ and g̃ from the space of finite point configura-
tions on B15R(0) and on B15R(t) respectively such that f̃(Y|B15R(0)) = f(X(0))1(E(0))c and g̃(Y|B15R(t)) =
g(X(t))1(E(t))c . Since Y ∩B15R(0)∩B15R(t) = ∅ a.s., the random variables f(X(0))1(E(0))c and g(X(t))1(E(t))c

are independent and hence we get∣∣Cov
(
f(X(0)), g(X(t))

)∣∣ ≤ ∣∣Cov
(
f(X(0))1(E(0))c , g(X(t))1(E(t))c

)∣∣+ 6S2 · P(E(0))

≤ 6S2(1 +md)e
−κd‖t‖d/30d .

Hence (3) holds and thus all assumptions of Theorem 5 are fulfilled.
However, for any measurable, bounded function f : R→ R the asymptotic variance is zero:∫

Rd
Cov

(
f(X(0)), f(X(t))

)
dt = 0.

At first we derive bounds for
∫
[−r,r]d Cov

(
f(X(0)), f(X(t))

)
dt for any r > 0. Put x1 := 0 and choose

N − 1 balls of radius R := r/30 covering the boundary of [−r, r]d, say BR(x2), . . . , BR(xN ). Clearly, N
can be chosen independent of r. Let Ci denote the union of all cells that lie completely in [−r, r]d and
Cb the union of all cells intersecting the boundary of [−r, r]d. Then∣∣∣ ∫

[−r,r]d
Cov

(
f(X(0)), f(X(t))

)
dt
∣∣∣

≤
∣∣∣Cov

(
f(X(0)) · 1(ER,1)c ,

∫
Ci

f(X(t)) dt · 1(∪Ni=2ER,i)
c

)
+ Cov

(
f(X(0)) · 1(ER,1)c ,

∫
Cb∩[−r,r]d

f(X(t)) dt · 1(∪Ni=2ER,i)
c

)∣∣∣
+2S2 · (2r)dNP(ER,1).

Now f(X(0)) · 1(ER,1)c and
∫
Cb∩[−r,r]d f(X(t)) dt · 1(∪Ni=2ER,i)

c are independent.

In order to compute
∫
Ci
f(X(t)) dt, we calculate

∫
C(ξi,Y )

f(X(t)) dt for every cell C(ξi, Y ) of the

mosaic by algebraic induction. First let f = 1[0,T ], T ∈ [0, 1]. We introduce the function

g : [0,∞)→ R, s 7→ λd({v ∈ C(ξi, Y ) | ‖v − ξi‖ ≤ s}).

By [23, Lemma 5, Lemma 2(i) and Lemma 1], it is continuous and strictly monotonically increasing on
{s ∈ [0,∞) | g(s) < λd(C(ξi, Y ))}. Hence the restriction of g to [0, s∗], where

s∗ := min{s ≥ 0 | g(s) = λd(C(ξi, Y ))},

is bijective. We have
X(t) = g(‖t− ξi‖)/λd(C(ξi, Y )), t ∈ C(ξi, Y ),

and therefore for any T ∈ [0, 1]∫
C(ξi,Y )

1[0,T ](X(t)) dt = λd({t ∈ C(ξi, Y ) | g(‖t− ξi‖) ≤ T · λd(C(ξi, Y ))})

= λd({t ∈ C(ξi, Y ) | ‖t− ξi‖ ≤ g−1(T · λd(C(ξi, Y )))})
= g(g−1(T · λd(C(ξi, Y ))))

= T · λd(C(ξi, Y )).
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The system {
B ∈ B([0, 1])

∣∣∣ ∫
C(ξi,Y )

1B(X(t)) dt = λ(B) · λd(C(ξi, Y ))
}

is clearly a Dynkin system and hence coincides with Borel-σ-algebra B([0, 1]). Now it is easy to see that
the equality ∫

C(ξi,Y )

f(X(t)) dt =

∫
[0,1]

f(x) dx · λd(C(ξi, Y ))

extends to linear combinations of indicator functions, thus to non-negative measurable functions f and
finally to integrable functions f : [0, 1]→ R.

So

Cov
(
f(X(0)) · 1(ER,1)c ,

∫
Ci

f(X(t)) dt · 1(∪Ni=2ER,i)
c

)
= Cov

(
f(X(0)) · 1(ER,1)c ,

∫
[0,1]

f(x) dx · λd(Ci) · 1(∪Ni=2ER,i)
c

)
.

However, if
⋃N
i=2ER,i does not hold, then the boundary of Ci and hence λd(Ci) is completely determined

by Y|∪Ni=2B15R(xi). So f(X(0))·1(ER,1)c and λd(Ci)·1(∪Ni=2ER,i)
c are independent and therefore we conclude∣∣∣ ∫

[−r,r]d
Cov

(
f(X(0)), f(X(t))

)
dt
∣∣∣ ≤ 2S2 · 2drdNP(ER,1)

≤ 2d+1S2rdN(1 +md)e
−κdrd/30d .

Thus ∫
Rd

Cov
(
f(X(0)), f(X(t))

)
dt = 0.

5 Functional central limit theorem

In this section we are going to extend Theorem 5 to a functional central limit theorem.
We let V denote the vector space of all Lipschitz continuous functions R→ R and equip V with the

norm defined by
‖f‖ := Lip f + |f(0)|,

where

Lip f := sup
x,y∈R,x 6=y

|f(x)− f(y)|
|x− y|

is the Lipschitz constant of f .
For a measurable random field (X(t))t∈Rd and a sequence (Wn)n∈N of compact subsets of Rd we define

random functionals by

Φn : V → R, f 7→
∫
Wn

f(X(t)) dt− λd(Wn)E[f(X(0))]√
λd(Wn)

.

Under weak regularity conditions, these functionals take values in the dual space1 V ∗ of V .

Lemma 11. If
∫
Wn
|X(t)| dt < ∞ a.s. for all n ∈ N and E[|X(0)|] < ∞, then Φn, n ∈ N, is a bounded

linear functional on V for each ω ∈ Ω.

Proof: The linearity is readily checked. So let us show that the paths are bounded on the set {f ∈ V |
‖f‖ ≤ 1}. This holds since |f(x)| ≤ ‖f‖ · (|x|+ 1) for all x ∈ R and therefore

|Φn(f)| ≤ ‖f‖ ·
∫
Wn

(|X(t)|+ 1) dt+ λd(Wn)E[|X(0)|+ 1]√
λd(Wn)

.

1As far as it is known to the authors, the problem of characterisation of V ∗ is still open.
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We consider V ∗ with the weak topology, i.e. the topology of pointwise convergence. As usual, we say
that a sequence (Φn)n∈N of V ∗-valued random variables converges in distribution to a V ∗-valued random
variable Φ if

lim
n→∞

Eh(Φn) = Eh(Φ)

for all bounded continuous functions h : V ∗ → R.

Theorem 12. Let (X(t))t∈Rd be a stationary and measurable random field. Assume that there are
constants n ∈ N, δ > 2 and C, l > 0 with

n

d
> max

{
l +

δ + 2

δ
,
δ + 2

δ − 2
, 3
}

such that αγ(r) ≤ Cr−nγl for all γ ≥ 2κd, r > 0 and E|X(0)|δ+2 < ∞. Let (Wn)n∈N be a VH-growing
sequence of compact subsets of Rd. Then (Φn)n∈N converges weakly in distribution to a centered Gaussian
process Φ on V with covariance

Cov(Φ(f),Φ(g)) =

∫
Rd

Cov(f(X(0)), g(X(t))) dt. (4)

The proof of this theorem relies on the following result, which is a special case of Satz 5 of [17]:

Theorem 13. Let V be a locally convex, metrizable space. A sequence of V ∗-valued random elements
(Φn)n∈N converges to a V ∗-valued random element Φ iff for all finite collections {f1, . . . , fm} the sequence
(Φn(f1), . . . ,Φn(fm))n∈N converges in distribution to (Φ(f1), . . . ,Φ(fm)).

So, in order to prove Theorem 12, we have to prove the convergence of the finite-dimensional random
vectors and we have to show that there is a centered Gaussian process Φ with covariance (4) and that
this process has a version with linear and continuous paths.

The first point is simply checking the conditions of Theorem 5. All assumptions of Theorem 5 except
assumption (ii) are directly assumed in Theorem 12. By [6, p. 9, Theorem 3(1)] we have

|Cov(fi(X(0)), fj(X(t)))| ≤ 8 (α2κd(‖t‖∞))
1/3 (E[|fi(X(0))|3]

)1/3(E[|fj(X(t))|3]
)1/3

≤ C ′‖t‖−d−ε∞
(
E[|fi(X(0))|3]

)1/3(E[|fj(X(0))|3]
)1/3

for any Lipschitz continuous functions fi, fj : R→ R and some constants C ′, ε > 0. Since fi is Lipschitz
continuous and E[|X(0)|3] <∞, we get E[|fi(X(0))|3] <∞ and hence we have∫

Rd
|Cov(fi(X(0)), fj(X(t)))| dt <∞,

which is assumption (ii) of Theorem 5. Thus the assumptions of Theorem 5 are fulfilled and therefore
the finite-dimensional distributions converge appropriately.

In order to show the existence of the process Φ, we employ the theory of GB- and GC-sets (see e.g.
[8, Chapter 2]). The isonormal process on a Hilbert space H with scalar product 〈·, ·〉 is the centered
Gaussian process Ψ with covariance function

Cov(Ψ(f),Ψ(g)) = 〈f, g〉, f, g ∈ H.

For a set B ⊆ H and ε > 0 we define N(ε) to be the minimal number n of elements f1, . . . , fn ∈ B
such that for any element f ∈ B there is an index i ∈ {1, . . . , n} with

√
〈f − fi, f − fi〉 < ε. We obtain

combining [8, Theorem 2.6.1, Theorem 2.5.5(g)] and the remark above [8, Lemma 2.5.3]:

Lemma 14. Let H be a Hilbert space and B ⊆ H. If∫ ∞
0

(logN(ε))1/2 dε <∞, (5)

then the isonormal process Ψ has a version with paths that are bounded on B and linear on H.
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We define a symmetric non-negative definite bilinear form 〈·, ·〉 on V by

〈f, g〉 =

∫
Rd

Cov(f(X(0)), g(X(t))) dt.

Now H̃, defined as the quotient space V modulo the functions f ∈ V with 〈f, f〉 = 0, is a pre-Hilbert
space. Its completion H is a Hilbert space, see [7, Theorem 5.4.11]. It is not clear whether H̃ = H holds.

Lemma 15. For the canonical projection of the set B := {f ∈ V | ‖f‖ ≤ 1} onto H inequality (5) holds.

Corollary 16. There is a centered Gaussian process Φ on V with covariance function (4). This process
has a version whose paths are linear and continuous.

Proof: Let π : V → H be the canonical projection and injection map. According to Lemma 15 and
Lemma 14 the isonormal process on H has a version Ψ with paths which are linear on H and bounded
on π(B). So Φ := Ψ ◦ π is a centered Gaussian process with covariance function (4) and linear paths.
Since the paths are bounded on B, they are continuous.

Proof of Lemma 15:
We construct the functions f1, . . . , fn like this: Fix m ∈ N and c > 0. Then there are n = 22m

Lipschitz-continuous functions f with the following properties:

• f(0) = 0

• On each of the intervals [(k − 1)c, kc], k = −m+ 1, . . . ,m, the function f is either increasing with
constant slope 1 or decreasing with constant slope −1.

• On the intervals (−∞,−mc] and [mc,∞), the function f is constant.

Enumerate these functions as f1, . . . , fn. Now for each function f ∈ B with f(0) = 0 there is a function
fi with |f(kc) − fi(kc)| ≤ c for each k = −m, . . . ,m. We will prove this claim by induction for a fixed
function f . Of course, |f(kc)− fi(kc)| = 0 ≤ c for k = 0 and all i = 1, . . . , n. Assume that the existence
of an i ∈ {1, . . . , n} with |f(kc) − fi(kc)| ≤ c for k = −M, . . . ,M has been shown for some M < m.
By the definition of the system {f1, . . . , fn} it is clear that as soon as there is one function fi with this
property, there are four such functions fi1 , . . . , fi4 such that on [Mc, (M + 1)c] the functions fi1 and fi3
are increasing and fi2 and fi4 are decreasing, while on [(−(M + 1)c,−Mc] the functions fi1 and fi2 are
increasing and fi3 and fi4 are decreasing. Hence |f((M + 1)c)− fi(Mc)| < 2c for i = i1, i2, and moreover
fi1((M+1)c) = fi1(Mc)+c and fi2((M+1)c) = fi2(Mc)−c which implies |f((M+1)c)−fi((M+1)c)| ≤ c
either for i = i1 or for i = i2. Of course, this holds also for i = i3 resp. i = i4. Moreover, in the same
way we get |f((−M − 1)c) − fi((−M − 1)c)| ≤ c either for i = i1, i2 or for i = i3, i4. Since there is one
index i for which both inequalities hold, the induction step is completed.

Now choose some r < δ/2 + 1 with n/d > r/(r − 2), which is equivalent to n(1 − 2/r) > d. Put
γ := min{r, δ + 2 − 2r}, c := ε1+γ/(4r) and m := d 1

ε2−γ/(4r)
e, where ε > 0 is sufficiently small. Then for

each f ∈ B there is an index i ∈ {1, . . . , n} with 〈f − fi, f − fi〉 < ε2. Indeed, since the bilinear form
vanishes for constant functions, we may assume f(0) = 0. Now let i be the same index as chosen right
above. We abbreviate g := f − fi. Then [6, p. 9, Theorem 3(1)] implies

〈f − fi, f − fi〉 =

∫
Rd

Cov
(
g(X(0)), g(X(t))

)
dt

≤ 8(E[|g(X(0))|r])2/r ·
∫
Rd
α2κd(‖t‖)(1−2/r) dt.

The integral is finite, since α2κd(‖t‖)(1−2/r) ≤ C(2κd)
l‖t‖−n(1−2/r). Since |g(x)| ≤ 2|x| for all x ∈ R, we

get

E[|g(X(0))|r1{X(0)≤−y}] ≤ E[2r|X(0)|r1{X(0)≤−y}] ≤ D · y−(δ+2−r) ≤ D · y−(r+γ) and

E[|g(X(0))|r1{X(0)≥y}] ≤ E[2r|X(0)|r1{X(0)≥y}] ≤ D · y−(δ+2−r) ≤ D · y−(r+γ)
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for D := 2rE[X(0)δ+2] and y ≥ 1. Moreover, |g(kc)| < c for k = −m, . . . ,m and the fact that g is
Lipschitz continuous with Lipschitz constant at most 2 imply |g(x)| < 2c for x ∈ [−mc,mc]. Hence

E[|g(X(0))|r] = E[|g(X(0))|r1{X(0)≤−mc}] + E[|g(X(0))|r1{−mc<X(0)<mc}]

+ E[|g(X(0))|r1{X(0)≥mc}]

≤ D · (mc)−(r+γ) + (2c)r +D · (mc)−(r+γ)

= 2D · (d1/ε2−γ/(4r)e · ε1+γ/(4r))−(r+γ) + 2rεr+γ/4

≤ 2D · ε(1−γ/(2r))(r+γ) + 2rεr+γ/4

=: h(ε).

Since (1 − γ/(2r))(r + γ) = r + γ/2 − γ2/(2r) > r, we get limε→0 h(ε)/εr = 0 and so 〈f − fi, f − fi〉 is
less than ε2 if ε > 0 is small enough.

Thus we have shown N(ε) ≤ 22m ≤ 22/ε
2−γ/(4r)+2 for all ε ∈ (0, E1) for some constant E1 > 0.

Therefore ∫ E1

0

(logN(ε))1/2 dε <

∫ E1

0

(log 2)1/2 · (2/ε2−γ/(4r) + 2)1/2 dε

≤ (log 2)1/2 ·
∫ E1

0

2 ·max{ε−(1−γ/(8r)), 1} dε <∞.

Since
∫∞
E1

(logN(ε))1/2 dε <∞ by [8, p. 52], this completes the proof of the lemma.

Remark 17. It remains an open problem whether the mixing assumptions in Theorem 12 can be replaced
by association assumptions. Another open problem is to enlarge the space V of admissible functions in
Theorem 12 to encompass all measurable functions as in the formulation of Theorem 5.
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pp. 699–702.

[15] K. Mecke and D. Stoyan: Morphology of Condensed Matter - Physics and Geometry of Spatially
Complex Systems. Springer, 2002.

[16] D. Meschenmoser and A. Shashkin: Functional central limit theorem for the volume of excursion
sets generated by associated random fields. Statist. Probab. Lett. 81(6) (2011), pp. 642–646.

[17] U. Oppel: Schwache Konvergenz kanonischer zufälliger Funktionale. Manuscripta Math. 8 (1973),
pp. 323–334.

[18] P. Roy: Nonsingular group actions and stationary SαS random fields. Proc. Amer. Math. Soc. 138
(2010), pp. 2195–2202.

[19] B. Rajput and J. Rosinski: Spectral representations of infinitely divisible processes. Probab. Th. Rel.
Fields 82 (1989), pp. 451–487.

[20] R. Schneider and W. Weil: Stochastic and Integral Geometry. Springer, 2008.

[21] W. Schoutens: Stochastic Processes and Orthogonal Polynomials. Lecture Notes in Statistics 146.
Springer, 2000.

[22] E. Spodarev: Limit theorems for excursion sets of stationary random fields, in: V. Korolyuk,
N. Limnios, Y. Mishura, L. Sakhno and G. Shevchenko, “Modern Stochastics and Applications”.
Springer Optimization and its Applications, v. 90 (2014), pp. 221–244.
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