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Automated focal cortical dysplasia detection on
brain MR images using image analysis
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Abstract— Focal cortical dysplasias (FCDs) represent
one of the most frequent causes of pharmaco-resistant
focal epilepsy. Despite improved clinical imaging methods
over the past years, FCD detection remains challenging, as
FCDs vary in location, size, and shape and can evenly be
unrecognized. In this work we propose novel FCD detec-
tion algorithms, based on distributions of grey and white
matter intensities. Based on these algorithms, we created
three-dimensional feature maps where the brain areas with
intensity and morphological abnormalities are highlighted.

We collected 3-dimensional T1-weighted, T2-weighted
and fluid-attenuated inversion recovery (FLAIR) magnetic
resonance images (MRI) of 90 patients with clinically con-
firmed FCD. All images were preprocessed and segmented
for further analysis. Gray and white matter distributions are
analyzed with a set of algorithms and compared to a normal
database, resulting in the detection of clusters. To evaluate
the detection performance of our method, we calculated
metrics considered common in similar works.

Feature maps based on T1-weighted images junction
maps reached lesion detection in 71% of subjects (64 of
90), where the lesion hits top 10 detection map clusters.
On the other hand, curvature detection maps revealed poor
performance with detection on 11% of subjects.

Additionally, we integrated the information from all fea-
ture maps in classification models to achieve automa-
tized detection tool for FCD lesions. Best model sensitivity
reached 78%.

Presented algorithms demonstrated interpretable and
computational efficient automated detection of the FCD.
Created feature maps and information combining classi-
fication models carry viable information in the diagnostic
routine of drug-resistant focal epilepsy.

Index Terms— Focal cortical dysplasia, voxel-based anal-
ysis, blurring, brain segmentation, statistical image analy-
sis.
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I. INTRODUCTION

A. Clinical task

Epilepsy is one of the most common neurological disor-
ders characterized by chronic and recurrent epileptic seizures.
MRI is nowadays a substantial diagnostic tool aiming at
detecting potentially epileptogenic lesions for neurosurgery
planning. Over the past decades, the quality of MR images
has substantially improved not only by equipment but also by
further development of epilepsy-specific protocols and partic-
ular sequences (e.g. high resolution FLAIR in focal cortical
dysplasia, i.e., a cortical malformation resulting from abnormal
proliferation of neurons and abnormal cortical organization
during pregnancy).

Despite the efforts to improve MRI acquisition protocols,
about 20-30% of patients with focal epilepsy still remain non-
lesional after visual inspection of their MR images. Detection
of pathological changes by ”manual” analysis of MRI requires
the radiologist to visually inspect a large number of images
obtained in various scanning modes using a significant num-
ber of routine operations, and therefore the overall process
can take several hours. For example, to detect and localize
an epileptogenic focus, routine diagnostic techniques include
analyzing images obtained in different pulse sequences with
different resolution and signal-to-noise ratio, evaluation of
the intensity of the white and gray matter tissues, as well
as the presence or absence of focal changes. Therefore, to
detect and localize an epileptogenic focus, an experienced
radiologist may need to analyze from a few hundred to several
thousand two-dimensional MRI slices obtained by various
scanning protocols. Additionally, the low contrast between
healthy tissue and pathology can make it difficult to reliably
detect small hidden lesions, requiring the expertise of highly
experienced radiologists. Computerized MRI analyses thus
have been introduced to enhance visualization of especially
subtle lesions that might be overlooked by conventional visual
inference with the aim of reducing the proportion of non-
lesional patients.

Typical MRI features of FCD include abnormal gyral con-
tours, thickening of the cortex, abnormal differentiation of
the grey-white matter boundary, and sometimes signal hyper-
intensity in T2-weighted images. In subtle cases, however,
diagnosis is time-consuming and difficult, and conventional
MRI can be unrevealing in a high percentage of patients.
Therefore, attempts have been made to facilitate lesion de-
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tection by modern image post-processing strategies.

B. Current state of the art and difficulties

1) Image features and statistical approaches: Previously a
voxel-based method has been developed for post-processing
of MRIs based on algorithms of the freely available software
for statistical parametric mapping (SPM) and on additional
simple calculations and filters; this approach has been used
in a multitude of international studies, see for example [15].
Here, from a high-resolution T1-weighted 3D MRI dataset
three new feature maps are derived which characterize in
comparison with a normal database three different potential
features of FCD: the abnormal extension of grey matter into
white matter, blurring of the grey-white matter junction, and
abnormal thickness of the cortical ribbon. This morphometric
MRI analysis has proven to facilitate the detection of subtle
FCD (and potentially other epileptogenic lesions) and to
increase the diagnostic yield of MRI in that respect, although,
in the original approach, the recognition of FCD in the new
feature maps was still based on visual examination, and a clear
cut-off differentiating between truly dysplastic brain areas and
false-positive findings highlighted in these maps was missing.
In contrast to the conventional visual analysis of MR images,
however, computer-based quantitative post-processing tech-
niques such as this morphometric MRI analysis already offer
several advantages, e.g. an inherent comparison with a normal
database, a comprehensive and gapless 3D high-resolution
analysis of MRI data with reduced risk for misinterpretation
due to partial volume effects, and the enhanced visualization
of different potential and complementing imaging features of
cortical malformations which are not always easily assessable
by pure visual examination.

A large number of works discuss the difficulties of detecting
FCD in visual manual analysis of MRI. As mentioned above,
FCD patterns on MRI are connected with local thickening of
the cortex and / or violation of the border between white and
gray matter and / or focal atrophy and / or altered MR signal
at different pulse sequences [3].

2) Machine learning and computer vision approaches: There
is a large number of papers in which the methods of machine
learning (ML) and computer vision are used for segmenta-
tion/detection of medical images (MRI, compute tomography,
ultrasound, electroencephalography and electrocardiography,
etc.) to detect/isolate tumors, lesions and other pathological
changes. One of the most adequate approaches, and, at the
same time, one of the most difficult in the field of computer vi-
sion, is semantic segmentation; the relevance of this approach
over the past 30 years is constantly growing. Convolutional
neural networks (CNN) that are part of Deep Learning (DL)
technologies show the best results in many areas, including
medical data diagnostics.

However, the vast majority of papers [33], [8], [12] on the
application of this kind of methods do not take the features of
the data into account, inherent in most cases that are studied
in clinical practice, namely:

- MRI obtained using different pulse sequences have varying
intensities of the MR signal,

- for some pulse sequences, the radiologist does not have a
complete data array, but only a set of 2D images taken from
slices examined at irregular intervals; in turn, these 2D slice
images have a higher resolution, and non-isotropic pixel/voxel
sizes are used,

- only a part of MRI will have full segmentation masks;
for other MR images, either only bounding boxes will be
indicated, or just the binary answer 0/1 - the presence/absence
of epilepsy, etc.

For this reason, the straight use of existing deep learning
methods for the detection of MRI described above cannot be
carried out, and it is challenging to try new data preprocessing
and feature extraction techniques before applying DL models.

In the last decade, more elaborated technical advances
have been established and were recently combined with ML
techniques in first studies [16], [20], [19] to enable a fully
automated detection of FCDs with high sensitivity. Beside
voxel-based methods, surface-based analyses have been ap-
plied by other research groups also providing promising results
especially in combination with multivariate ML techniques [1],
as demonstrated in MRI samples of limited size 24.

Further studies mainly by the Dr. Bernasconi research group
could repeatedly confirm the feasibility of multivariate ML
techniques in the detection of previously MRI-negative FCDs
in a fully automated manner [14], [13]. A study by Jin et
al. [16] applied surface-based morphometry combined with
an automated classifier to a large cohort of patients with
FCD type II whose MRIs were obtained in different epilepsy
centers. Despite the heterogeneity of MRI scanners and pro-
tocols, they found a robust detection performance of their
method. Currently, the data-driven analysis of disease factors
provides a novel appraisal of the continuum of interindividual
variability, which is likely determined by multiple interacting
pathological processes so that in recent publications, incorpo-
rating interindividual variability is likely to improve clinical
prognostics [20].

Although unbiased approaches are well established, auto-
mated detection methods fail in 20% to 40% of patients, par-
ticularly with subtle FCD, and suffer from high false-positive
rates. In the meanwhile, current approaches successfully use
unsupervised learning in FCD detection [19]; although first
studies even used deep CNN classifiers in multicenter data
(148 patients’ MRI [12]), the optimization of the techniques
still remains a challenge given the complexity of the MRI
phenotypes.

C. Local FCD image properties and novel statistical
features

In this work we studied distinctive image features that
represent visual signs of FCD lesions.

1) Local FCD image properties: The following five image
features of cortical dysplasia were analysed:

Transmantle sign (TMS) - signal change extending from the
subcortical white matter in direction to the ventricle (Fig. 1a).

White matter (WM) hyperintensity - abnormal signal change
in the subcortical white matter according to the normal cortex
(Fig. 1a, 1c).
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(a) T2-Flair sample with TMS
and WM hyperintensity

(b) T2w sample with abnormal
WM and GM hyperintensity

(c) T2-Flair sample with WM
hyperintensity

(d) T1w sample with abnormal
sulcal pattern

Fig. 1: Examples of FCD image properties with corresponding
manual segmentaion

Cortical gray matter (GM) signal intensity - signal change
involving the entire thickness of T1w, T2w, Flair cortex (Fig.
1b).

Abnormal sulcal pattern (Fig. 1d) - abnormal anatomy of
the gyrus and sulcus, different from the standard brain model,
without changing signal characteristics of the brain structures.
It could represent both extended zones and local change in the
course of gyrus and sulcus [31].

Segmental hypoplasia/atrophy - underdevelopment of gray
and white matter of the brain due to conditions during
embryonic and perinatal development or due to impaired
trophic/blood supply to the brain.

2) Features: In this paper, we propose three image features
and show that they perform well detecting different kinds of
brain lesions in our MRI database:

• the concentration rate CRg of g gray scales close to
white is designed to locate lesions characterized by gray
or white matter hyperintensity,

• the local α-Rényi entropy Rα of gray scales with α = 2
performs best finding gray or white matter hyperintensity
areas and transmatle sign,

• the anisotropic sample variance approach helps detecting

blurred gray-white matter junction.
Although these features are not new, their use in FCD

detection context is certainly novel.

D. Paper structure and aims
After an initial data and image preprocessing description,

we introduce and explore novel statistical features targeting
lesion-specific properties on MR images. Special focus here
is to assess and quantify local (near the lesion - non-lesion
border) feature properties.

Next, on in-house original dataset we calculate baseline
quality lesion segmentation metrics for well-established con-
ventional features like gray matter thickness, curvature, gray-
white matter junction maps (blurring) and sulcal depth.

Similar to [7], we trained a feed-forward network, multi-
layer perceptron (MLP), to make a prediction of FCD location
in a simple, interpretable manner. We trained this model on
all features and calculated their importances for DL model.

II. METHODS

First, we give a brief mathematical description of image
features that we use in the segmential MRI analysis. Then, we
give a detailed account of all image processing steps needed
for final FCD lesion detection, including normalization, post-
processing as well as neural network training.

Let N0 = N ∪ {0} be the set of all natural numbers and
zero. For d = 2, 3, consider a lattice

Ld = {1, . . . ,M}d

of Md > 0 pixels or voxels v making up a (for simplicity,
quadratic or cubic) d–dimensional gray scale MR image

X : Ld → N0 ∩ [0, 255],

where X(v) is the brain MR gray scale value at a pixel/voxel
v. Here, the gray levels 0 and 255 correspond to black and
white colors, respectively. Let Wm(v) = v + [−m,m]d ∩ Ld

be a cubic mesh of side length (2m+1) < M with its central
vertex at v ∈ Ld. We will use it as a scanning window moving
around our MR image X .

A. Novel MRI features and their properties
In what follows, we consider pixel/voxel-based features

FX : Ld → R

which are computed from a local knowledge of MRI X , i.e.,
FX(v) depend of the values of X within the scanning window
Wm(v). Such a feature FX is used to detect an anomalous area
AX of brain MRI X taking the level set

AX = {v ∈ Ld : FX(v) ̸∈ [uγ/2(v), u1−γ/2(v)]}

for some small error of the first kind γ > 0 where uβ(v) are
empirical quantiles of FX(v) at level β ∈ (0, 1) computed
from the training set of all MRI of a healthy hemisphere of
brains from our dataset.

Now we briefly describe three image features FX which
help finding specific kinds of lesions in brain MRI. Borrowed
from mathematics and statistics, thy have been never used in
brain lesion detection before.
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1) Concentration rate: Following the well–known concen-
tration measures from econometrics like the Lorenz curve and
Gini coefficient (cf. e.g. [11], [32]), the concentration rate
(CR) of gray scales of X can be introduced as

CRg,k(v) =

(2m+1)d−k∑
i=(2m+1)d−g−k+1

X(i), (1)

where g ∈ N is the number of highest gray scales of X
truncated on k taken into account, and X(i) is the i-th highest
order statistic of gray scales of X in our scanning window
Wm(v).

If g and error level γ > 0 are small enough, the statistic
CRg,k finds regions within the brain MR image subject to high
concentration of white scales. In our 3D MRI database, CRg,k

is sensitive to lesions of gray or white matter hyperintensity.
2) Local entropy of gray scales: For calculating the en-

tropy feature, we used the commonly extracted gray-level co-
occurrence matrix (GLCM) [29], [6]. This matrix shows the
frequency that two voxels of specific gray-level intensities are
at a certain distance away from each other in a specified image
direction. We computed GLCM for distances from 1 to 4
within 13 main directions. Then, we summed up matrices for
all distances to get one matrix. Let fi,j be an element of this
matrix of size 2562. Renyi entropy of order α > 0, α ̸= 1
given by

Hα(v) = (1− α)−1 log

 255∑
i,j=0

fα
i,j


is a measure of ”disorder” of gray scales [26], [27].
For our 3D brain MR images, we locally computed entropy

estimates Ĥα for the values α = 2, 3, . . . , 19, 20. The feature
Ĥ2 performed best to discover lesions characterized by white
or gray matter hyperintensities or transmatle sign.

3) Anisotropic sample variance: Second-order methods us-
ing covariances and variograms are common in geostatistics
[5], [30] to detect changes in dependence structure of a
spatially located feature. With a brain MR image at hand,
this means the difference in thickness of white and gray/black
layers of the image which may indicate the presence of a
lesion. Using the gray scales X(t), t ∈ Wm(v) of a d–
dimensional MRI X (d = 2, 3), we define the local empirical
variance at a pixel/voxel v ∈ Ld as

V̂ (v) =
1

(2m+ 1)d − 1

∑
t∈Wm(v)

[
X(t)− X̄(v)

]2
,

where

X̄(v) =
1

(2m+ 1)d

∑
t∈Wm(v)

X(t)

is the local sample mean of the gray scales. Differences in
the values of V̂ (v) in various directions along or across the
boundary of gray-white matter for healthy and deceased brain
areas help finding specific kinds of lesions such as blurred
gray–white matter junction or transmantle sign.

B. Conventional features
Here some classical features used in lesion detection of MRI

are described.
1) Cortical Thickness: Cortical Thickness is measured as

a distance between white and cortical surfaces [3] for each
vertex of cortical reconstruction. White and Cortical surfaces
are obtained by inflating a mesh model to the boundary
between gray matter and white as well as gray matter and
cerebrospinal fluid, respectively. FreeSurfer routinely has a
hard limit of 5 mm on the cortical thickness, so we ran
the command ”mris-thickness” expert option parameter that
allowed a maximum value of 10 mm.

2) Sulcal depth: The dot product of the movement vector
of the cortical surface during inflation is used to calculate the
sulcal depth. Shallow gyral areas of the brain move inwards
during inflation and have a negative value whereas deep sulcal
areas move outwards and have a positive value [9].

3) Curvature: It was calculated as mean curvature (1/R mm)
of the white matter surface with a Gaussian smoothing kernel
applied [25].

4) Blurring: To detect and localize areas of increased gray-
white matter indicative of FCD, the so-called ”junction im-
ages” were calculated [15], [17], considered to brighten ab-
normal blurring of the gray-white matter junction. Junction
images were obtained with several steps. First individual lower
and upper intensity thresholds were calculated for T1w images
according functions:

Tlower threshold = MeanGM + δ · StdGM ,

Tupper threshold = MeanWM − δ · StdWM ,
(2)

where mean (Mean) and standard deviation (Std) of masked
T1w are computed by probability maps of gray matter (GM)
and white matter (WM) respectively, δ is a parameter chosen
experimentally so that

Tlower threshold < Tupper threshold.

We also explored ”junction images” for T2w and Flair im-
ages. Thresholds for them were calculated according functions:

Tlower threshold = MeanWM + δ · StdWM ,

Tupper threshold = MeanGM − δ · StdGM .
(3)

Each voxel with a gray value between these thresholds was
set to 1, while the remaining voxels were set to zero resulting
in a binary image. To brighten clustered regions with voxels
equal to 1, the binary image was filtered with convolutional
kernel of ones with shape 53, as was done in [15]. After that,
a normalization was performed. The method of normalization
will be described in Section II-D.

C. Features with poor performance
In contrast to the above features showing good success in

lesion detection of some kinds, the following more conven-
tional features from image analysis did not perform well and
are therefore discarded in the sequel. Those are, for instance,
Frangi [10], Meijering [21] and Hessian [22] filters that were
designed to extract thin image objects such as blood vessels,
neurites, wrinkles and cracks. Modified energy approach based
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on GLCM and normally used for texture analysis shows no
lesion detection as well.

D. Normalization
The last part of calculation of a junction image (cf. Section

II-B.4) is a normalization on healthy patients. It is an important
step because it compensates the variability of junction between
gray and white matters in different brain regions. In previous
works [15], the normalization was performed by subtracting
the mean of images obtained for healthy patients.

In our case, we had only six brain images of control
subjects, therefore we extracted hemisphere of brain images
from FCD dataset where no FCD lesions were found. In the
result we had 95 left and 94 right healthy hemispheres of
brains. We used quantiles to normalize junction images and
features described in Section II-A. The use of quantiles is
widespread in image analysis because a quantile is a more
robust statistic than the sample mean. We calculated different
sets of quantiles ql and qs, where ql is the larger quantile and
qs is the smaller one. The normalized features were calculated
according function:

X(v)n =


X(v)− ql, if X(v) > ql;
0, if qs ⩽ X(v) ⩽ ql;
qs −X(v), if X(v) < qs,

where X(v) is the MRI value in a voxel v before nor-
malization, X(v)n is the normalized voxel value. The con-
fidence levels for quantiles (ql, qs) were taken from the
set {(0.98, 0.02); (0.975, 0.025); (0.95, 0.05); (0.925, 0.075);
(0.9, 0.1)}. The pair of quantiles that after normalization gives
the highest precision was chosen for different features.

E. Postprocessing
The postprocessing procedure was done similarly as in [12].

The feature map was binarized by equating to 1 everything
that is not equal to 0. Then it underwent a postprocessing
routine entailing morphologic erosion, dilation, and extraction
of connected components (> 75 voxels as in [12]) to remove
noise. This procedure resulted in non-overlapping clusters.
The resulting binary map was multiplied by the initial feature
map to save information about the brightness of clusters after
normalization.

Features as thickness, curv and sulc did not undergo nor-
malization in the way described in Section II-D because
quantile normalization has lowered the quality metrics on these
features. So for them postprocessing took place in a different
way. Maps of these features were binarized at thresholds equal
to 10% and 90% quantiles to form separate clusters. Further
steps are the same as for other features.

F. Model design and data sampling
1) ANN classification: Automatic lesion detection was per-

formed by using an artificial neural network (ANN). We did
not use convolutional neural networks (CNN) as features were
already extracted. To utilize computational models derived
from MRI characteristics, single voxel values from 15 maps

were used as input values for ANN. Thus, ANN is trained
to classify each voxel of input feature maps on dysplastic
and non-dysplastic classes. We tried one-layer and two-layers
perceptrons with 5 to 15 nodes per layer. We used ReLU
activation layers between linear layers and a sigmoid layer
in the end.

2) Training and inference workflow: Before the training
procedure, we use histogram standardization [23] and z-
normalization for all the features. The usage of these nor-
malization techniques allows us to increase the quality of the
results.

Training of ANN on all voxels from a brain is time con-
suming, so it was decided not to choose all voxels. We chose
only dysplastic voxels and random N non-dysplastic voxels.
We tuned the number of non-dysplastic voxels per subject, N ,
included in the training procedure using cross-validation. This
number was chosen from the set: {3, 5, 8, 10, 12} × 105. For
validation, we took all voxels in validation brains.

As a loss function for the network training, we use a variant
of the Dice loss D, based on the Sørensen–Dice coefficient
DSC, see Eq. (4), (5). This coefficient is widely used as a
measure of the segmentation quality [2]:

DSC =
2 Pb ·Qb

|Pb|+ |Qb|
=

2 TP

2 TP + FP + FN
, (4)

D = 1−DSC, (5)

where in Eq. ( 4), the binarized volumetric network output
Qb indicates predicted probabilities of the FCD voxels, which
is compared with the binarized ground-truth layout Pb. It can
also be rewritten in terms of TP , FP and FN , indicating
the total number of True Positive, False Positive and False
Negative voxels, respectively.

We trained the network to minimize the loss function, using
backpropagation within the PyTorch framework [24]. For the
optimization, we used Adam method [18], applying it for 60
epochs with learning rate λ = 0.001 and β0 = 0.9, β0 = 0.99.
Learning rate was decreased in 0.2 times each epoch. Batch
size was 1.

The simplicity of the workflow was chosen on purpose,
since the main goal of this model is to estimate the validity
of the proposed features for FCD detection and not the model
per se.

G. Computing Resources and Data Availability

All computations and experiments were performed on a
desktop with Intel(R) CPU, i-7, 256 GM RAM, GPU x4
GTX1080Ti 12 GB, HDD x4 11 TB.

The source code is available by the link https://
github.com/NadezhdaAlsahanova/FCD_features
(version 1.0.0 at GitHub).

III. RESULTS

A. Demographics

The overall cohort comprised 90 patients with FCD (45
female patients, mean ± SD age 26 ± 13.9 years) with
MRI positive of FCD Type II. Visual inspection reported

https://github.com/NadezhdaAlsahanova/FCD_features
https://github.com/NadezhdaAlsahanova/FCD_features
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localization of lesions in front parietal lobe (n=52), temporal
lobe (n=35) and occipital lobe (n=6), multilobar cases (n=2).
Multilobar cases comprised two lesions in left frontal lobe
and two lesions in left frontal lobe and temporal lobe. Table
with lesion localization and visual features is in Supplementary
materials that is available in the supporting documents. White
matter hyperintensity was mostly presented (n=66) as a visual
feature of FCD Type II on T2w images.

B. Metrics
1) Voxel-Level Performance: To evaluate the effectiveness

of the proposed features and models, we calculated several
metrics: precision, DSC, sensitivity and specificity. Precision,
sensitivity and specificity are defined as

Precision =
TP

TP + FP
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

where TP and FP are defined above. We considered precision
to be the target metric, since doctors are more interested
not in the absolute accuracy of finding the lesion, but in
detecting several lesion regions from which they will be able
to determine the exact lesion. Other metrics were considered
as they are often used in similar works.

We decided to measure metrics by threshold to evaluate
segmentation performance. So we chose a threshold between 0
and maximum brightness of a feature. After that we calculated
numbers of true positive (TP ), false positive (FP ), true
negative (TN ) and false negative (FN ) voxels for the areas
of the features above a threshold. It was done to determine
whether the maximum values of the features are in the lesion
area.

Then the metrics were calculated as follows:

metric = metric(TP, TN, FP, FN)·I{(TP+TN) > 800},

where TP, TN, FP, FN depend on a threshold, I{(TP +
TN) > 800} is an indicator function to check that the volume
of found areas is not too small. 800 voxels is the first quartile
of the size of lesions in our dataset.

2) Patient-Level Performance: After the post-processing
stage described in Section II-E, all features maps have clusters
of different brightness. Since the doctors are able to see the
brightest clusters better, we ordered clusters by their average
brightness. Moreover, the greater the deviation from quantiles
of a healthy brain, the higher the brightness of clusters. Then,
for each patient, the brightness order of clusters that intersect
with the lesion was found. The percentage of patients for
whom this order does not exceed 10 is a metric of sensitivity.

C. Explore novel features and their local properties
To evaluate feature performance on the border between

lesion and healthy tissue, we chose only parts of the brains that
contain local areas around lesions. These areas include lesions

(a) Patient n38 (b) Patient n9

Fig. 2: Examples of lesion detection with the concentration
rate feature. Lesion areas are outlined with a blue line.

(a) Patient n19 (b) Patient G258

Fig. 3: Examples of lesion detection with entropy feature.
Lesion areas are outlined with a blue line.

and several gyri around them to see the difference between
the values of features on healthy and diseased voxels. In this
subsection we describe the results of calculating our features
in these local areas.

1) Concentration rate CRg: The feature described by for-
mula (1) depends on three parameters: g, k, m. The side
length of the scanning cube 2m+1 was chosen from numbers
{3, 5, 7, 9, 11}. The parameter g was chosen between 15
and the number of voxels in a cube with step equal to 15.
The parameter k was chosen from 1 to 15, it should be small
to discard only outliers. The highest difference between the
values in healthy and diseased voxels appeared to be with m,
g and k equal to 4, 105 and 15, respectively. It can be seen
in Fig. 2 how CRg finds lesion areas.

The mean values of precision and sensitivity for these
parameters are equal to 0.35 and 0.55.

2) Local α-Rényi entropy Hα: Two main parameters for
entropy feature are m and α. The parameter m for side length
of the scanning cube 2m + 1 was chosen from a subset
{2, 4, 6, 8, 10}.

The parameter α was chosen between 2 and 20. The best
parameters, which gave the maximum difference between
diseased and healthy voxels, are m = 10 and α = 2, see Fig. 3.
The average of precision and sensitivity for these parameters
are equal to 0.15 and 0.70, respectively.

3) Anisotropic sample variance approach: The parameter to
be specified for this feature is m ∈ {2, 4, 6, 8, 10}.

The best value of m is equal to 8. Precision and sensitivity
for this parameter are equal to 0.07 and 0.80, respectively. The
performance of this feature is shown in Fig. 4. It can be seen
that values inside the lesion area are smaller than outside, and
after normalization this difference is still kept noticeable.
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(a) Patient n27 (b) Patient G258

Fig. 4: Example of lesion detection with sample variance.
Lesion areas are outlined with a blue line.

D. Metrics on features

1) Cortical thickness, sulcal depth, curvature: Patient-
averaged voxel-level metrics for morphological features are
given in Table I. All metrics were calculated for features with-
out post-processing. It can be seen that the cortical thickness
gave the highest result. However, even this result is small
compared with proposed features. A patient-level metric was
calculated for features that undergo post-processing procedure
described in Section II-E. According to this metric, the lesion
is in the top 10 bright clusters for 34%, 13% and 9% of patients
for cortical thickness, curvature and sulcal depth respectively.

The average computational time needed to calculate cortical
thickness, curvature and sulcaction within MRIs is 2 hours
as a part of freesurfer recon-all pipeline.

2) Blurring feature: It was calculated using formulas (2)
and (3). The parameter δ for T1w was chosen from 0.1 to
0.5 with step 0.1 and for T2w and Flair from 0.01 to 0.05
with step 0.01. The best coefficients according to the results
of the experiments were 0.4, 0.03 and 0.04 for T1w, T2w
and Flair, respectively. Further, normalization with different
quantiles was performed for the obtained maps. The precision
of blurring features, depending on the selected quantile, is pre-
sented in Table II. It can be seen that the quantile normalization
gives better results than the standard mean normalization.

All metrics were calculated for features after normalization
and post-processing. Voxel-level metrics (Table I) show good
results. But it seems that the blurring calculated on T1w is
superior. However, there are patients whose T2w-Blurring or
T2Flair-Blurring give better results (see an example in Fig. 6).

According to patient-level metrics, the lesion is in the top 10
bright clusters for 71%, 43% and 23% of patients for blurring
on T1w, T2w and Flair, respectively. Moreover, it can be seen
for which patients a lesion got into the top 10 clusters in Fig. 5.

The average CPU time is needed to process the blurring
feature with normalization is about 15 seconds.

3) Concentration Rate: Voxel-level metrics for CR feature
are shown in Table I. This feature on Flair images gave
the highest avarage precision compared to all tested features.
Although T2Flair-CR gave better voxel-level metrics, there
are several patients whose T2w-CR has better quality than
T2Flair-CR feature, see examples in Fig. 7.

For 31% and 54% of patients, a lesion is in top 10 clusters
for CR on T2 and Flair, respectively.

TABLE I: Patient-averaged voxel-level metrics

Feature Precision DSC Sensitivity Specificity
Blurring T1 0.158 0.100 0.149 0.998
Blurring T2 0.062 0.070 0.189 0.998
Blurring Flair 0.019 0.029 0.208 0.994
CR T2 0.053 0.031 0.068 0.675
CR Flair 0.179 0.107 0.119 0.677
Entropy 0.132 0.127 0.207 0.931
Variance 0.060 0.033 0.032 0.767
Thickness 0.013 0.007 0.658 0.869
Sulc 0.003 0.006 0.363 0.962
Curv 0.002 0.004 0.265 0.965

TABLE II: Dependence of precision on quantiles after normal-
ization

Quantiles
Blurring

T1 T2 Flair
mean 0.109 0.005 0.011
(0.9,0.1) 0.125 0.032 0.016
(0.925,0.075) 0.135 0.036 0.017
(0.95,0.05) 0.151 0.031 0.018
(0.975,0.025) 0.160 0.044 0.019
(0.98,0.02) 0.158 0.062 0.019

On average, it takes 61 seconds to calculate this feature with
subsequent normalization.

4) Entropy: It can be seen from Table I, that the entropy
feature yields best results in terms of Dice metric. Moreover,
the lesion was in the top 10 bright clusters for 39% of patients.
The MRI with high value of entropy feature is seen in Fig. 8.

The calculation of this feature takes as much as 6 thou-
sand seconds on average. This is due to the computationally
expensive calculation of the GLC matrix.

5) Variance: Despite the low voxel-level metrics (Table I)
compared to other proposed features, the variance feature
showed results on those patients where other features did not
work (Fig. 5). An example is patient n43 whose variance
feature is in Fig. 8. According to patient-level metric, the
lesion was in the top 10 bright clusters for 37% of patients.

The calculation of this feature takes about 92 seconds on
average.

E. Results for ANN model and XGBoost model

In this section, we are addressing two questions: (1) whether
different models, operating on multimodal MRI, have signifi-
cant segmentation diagnostic value and (2) how established
feature maps impact the classification performance of the
models.

1) ANN performance: To evaluate the diagnostic ability of
the deep-learning model, we assess stratified k-fold cross-
validation metrics with the number of folds k = 9 within
FCD lesion localization. Our model is trained on the subset
F of features considered in the paper plus the original T1,
T2 and Flair images and WM and GM segmentation maps.
Respective metrics are reported in Table III.

A model trained on raw images only performs poorly. Voxel
level DSC, precision metrics and patient-wise sensitivity are
low. This can be explained by the simplicity of the models.

A model trained on all features demonstrated detection of
confirmed FCDs in 7 of 10 subjects on average, therefore, the
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Fig. 5: Indication that a lesion is found in top 10 brightest clusters for a patient. Points are the marks that top 10 brightest
clusters intersect with lesion for a patient.

(a) Patient n21 with the best results on T2w-Blurring

(b) Patient n27 with the best results on T2Flair-Blurring

Fig. 6: Lesion detection with T2w-Blurring and T2Flair-
Blurring. Lesion areas are outlined with a blue line.

patient-wise sensitivity was around 70%. Voxel-level metrics
of the model obtained as mean results of the 9-fold cross
validation (Precision = 0.231, DSC = 0.209, Sensitivity =
0.691) indicate relatively high sensitivity and DSC metrics.

In Fig. 9 we demonstrate representative examples of FCD
detection by the ANN model in the validation subset. Blue
contours mark lesions detected by a model.

2) XGBoost performance: To train XGBoost model [4], we
assess k-fold cross validation metrics with the number of folds
k = 9. Our model is trained on the subset F of features
considered in the paper plus the original T1, T2 and Flair
images and WM and GM segmentation maps. Early stopping
was applied to interrupt the training process whilst monitoring
the balanced accuracy value. We used half of training points
as validation set for early stopping. Voxel-wise metrics are

(a) Patient n38 with the best results on T2w-CR

(b) Patient G371 with the best results on T2Flair-CR

Fig. 7: Lesion detection with T2w-CR and T2Flair-CR. Lesion
areas are outlined with a blue line.

(a) Entropy for patient n38 (b) Variance for patient n43

Fig. 8: Good examples of lesion detection with Entropy and
Sample Variance. Lesion areas are outlined with a blue line.

reported in Table IV.
We can see that patient-wise sensitivity is higher than for

MLP results, while voxel-wise metrics are lower. It is due to
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Model input Precision DSC Sensitivity Patient
sensitivity FP

T1 only 0.076 0.081 0.870 28% 8± 4
T1 + all 0.231 0.209 0.691 71% 2± 2

TABLE III: Cross validation with 9 folds metrics for MLP
trained with different inputs: with T1, T2, Flair only and with
all available features, including T1, T2 and Flair. FP is a
number of false positive clusters.

Precision DSC Sensitivity Patient sensitivity FP
0.265 0.221 0.663 78% 3± 3

TABLE IV: Cross validation with 9 folds metrics for XGBoost
model trained with all available features, including T1, T2 and
Flair. FP is a number of false positive clusters.

(a) Patient n3 (b) Patient n5

Fig. 9: Slices of the segmentation examples from validation
subset. Yellow is true label, blue contour is a prediction of
MLP model.

(a) Patient n3 (b) Patient n5

Fig. 10: Slices of the segmentation examples from validation
subset. Yellow is true label, blue contour is a prediction of
XGBoost classifier.

the fact that the mean number of false positive clusters for
XGBoost predictions is higher than for MLP predictions. The
examples of XGBoost predictions can be seen in Fig. 10.

3) Feature importance: Locally Interpretable Model Agnos-
tic Explanations (LIME [28]) is a model-agnostic explanation
method that approximates any black box model with a local,
interpretable model to explain each individual prediction. We
used LIME to find features importance for both models.
Because LIME explains a model locally, we calculated im-
portances of all features as the mean absolute value of the
LIME values for validation points.

MLP and XGBoost feature importances are given in Fig. 11.

(a) MLP

(b) XGBoost

Fig. 11: Feature importance.

It can be seen that the most important features for both models
include Blurring and Variance features. Also, all of proposed
features are valuable for models.

IV. DISCUSSION

Although magnetic resonance imaging is currently the most
widely used diagnostic tool, the detection of FCD lesions using
MRI is still unsatisfactory. As a result, there is a need for
more accurate and efficient diagnostic methods. In our study
we evaluated methods for automatic FCD detection based on
features analysis and machine learning (ML) techniques. To
create MR images feature maps, we collected high-quality
MR images sequences (3D T1, Flair and T2 images) that
suffice ILAE Neuroimaging Task Force recommendations on
Harness-Mri protocol. To train ML models, we collected
3D volumetric FCD lesion segmentations. Extracted features
demonstrated significant detection performance of FCD le-
sions, however, we noticed the improvement of patient-wise
sensitivity of XGBoost classifier (78%) compared to best
performing Blurring detection map (71%) computed on T1w
image. Patient-wise feature maps specificity is high (0.99)
and demonstrates FCD detection in mostly top 10 brighest
clusters, this is comparable to the results of XGboost with
a tendency to result 3 ± 3 false positives. However, using
feature maps requires normalization and postprocessing with
heuristic arguments that could interfere the clinical workflow
integration.
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The results indicate that the introduced features can be
easily interpreted and have substantial diagnostic relevance
for doctors. Furthermore, the focus on contrast features in
this work is a key difference from recent studies related to
FCD that focus on deep learning models. Also, we showed
that classification models like MLP and XGBoost classifier
overall sensitivity was 71% and 78% respectively.

In the future work, we plan to validate proposed statistical
features on collected two-site dataset (n=203) with manu-
ally voxel-wise segmented FCD lesions by two experienced
radiologists. This validation will help to further improve
the efficiency and accuracy for automatic FCD detection in
patients with focal epilepsy.

In conclusion, the results of our study suggest that the use of
machine learning algorithms as for automatic FCD detection
based on contrast feature maps is a promising approach. With
further validation and refinement, these methods could become
valuable tools for improving the diagnosis and treatment of
patients with focal epilepsy. The development of accurate
and efficient diagnostic methods for FCD has the potential
to greatly improve patient outcomes and quality of life.
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