SS 2008 26/6/2008

(4)

Homework assignment for Risk Theory - #10

(Due Thursday, 3/7/2008, 10:15 a.m., H9)

1. An insurance company wants to estimate the late claims of an insurance portfolio that has been set up in 1998. The estimation has to be based upon the following claim amounts S_{ik} .

		Claim amounts S_{ik} in run-off year k				
Occurrence year	premium	k=1	2	3	4	5
1999	468	150	96	60	8	5
2000	570	180	120	14	9	
2001	630	198	28	21		
2002	98	40	31			
2003	112	42				

- (a) Use the Chain-Ladder Method in order to estimate the expected amount (5) that has to be paid in 2005 for claims that date from the occurrence year 2001.
- (b) Solve (a) using the distribution-free method.
- 2. Consider the following cumulative claim amounts.

		Cumulative claim amounts C_{ik}				
		in run-off year k				
Occurrence year	premium	k=1	2	3	4	
2001	120,000	15,000	45,000	70,000	85,000	
2002	130,000	15,000	55,000	75,000		
2003	140,000	20,000	65,000			
2004	150,000	20,000				
2003	140,000	20,000		13,000		

Suppose that all claims of a certain occurrence year can be settled completely within 4 years. Use the Chain-Ladder Method to

- (a) estimate the expected late claim reserve for the occurrence year 2002. (4)
- (b) estimate the expected amount to be paid in 2005 and 2006 for claims (5) dating from the occurrence year 2003.

3. Let X be an $\operatorname{Erl}(n, \lambda)$ -distributed risk with parameters $n \in \mathbb{N}$ and $\lambda > 0$. (4) Compute the premium for X using the

(a) expected value principle,

(b) standard deviation principle.

4. For a risk $X = \sum_{i=1}^{N} U_i$, where $N \sim \text{Poi}(\lambda)$ with $\lambda > 2$ and $U_i \sim U(0, 1)$, (6) let $\Pi(X)$ denote the premium. The contribution restitution (Beitragsrückgewähr) at the end of the insurance period is

(10)

(i) $\Pi(X)/2$ if no claim has been reported,

(ii) $(\Pi(X) - U)/2$ if a single claim of size U has been reported.

(a) Compute $\Pi(X)$ using the net premium principle.

(b) Give the value of $\Pi(X)$ for $\lambda = 5$.

5. For a risk with yearly aggregate claim amount X and distribution

k (Mio) EURO	1	2	3	
$\mathbb{P}(X=k)$	0.2	0.5	0.3	

an insurance company offers a profit sharing.

In case the risk premium $\Pi(X)$ exceeds the aggregate claim amount X, 40% of the difference $\max(\Pi(X) - X, 0)$ are given back. A self-settlement of claims is not possible.

- (a) Compute the net premium $\Pi(X)$.
- (b) For a net premium $\Pi(X)$ of 2.25 Mio EURO compute the expected value and the standard deviation of the profit after premium refund

 $\max(\Pi(X) - X, 0)0.6 + (\min(\Pi(X), X) - X).$