Homework assignment for Risk Theory - #4 (Due Thursday, 21/5/2008, 8:15 a.m., H7)

- 1. On the homepage, a sample of monthly claim counts from a portfolio of insurance contracts is provided.
 - (a) Based on the index of dispersion, assess whether the homogeneous Pois (2) son process is an appropriate model for the monthly number of claim counts.
 - (b) Assume that it is known that the data comes from a mixed Poisson (4) process with $\mathbb{P}(\Lambda = 1) = p$ and $\mathbb{P}(\Lambda = 10) = 1 p$. Use the estimated value of the index of dispersion from part (a) to determine p.
- Show that a real-valued stochastic process {X(t), t ≥ 0} with independent (6) increments has stationary increments if for all t ≥ 0 the distribution of the (one-dimensional) random variable X(t + h) X(h) does not depend on h ≥ 0.
- 3. Prove the following part of Theorem 3.2.1.
 - (a) Statement 1) \Longrightarrow Statement 2) (6)
 - (b) Statement 2) \implies Statement 3) (6)
 - (c) Statement 5) \Longrightarrow Statement 1) (6)
- 4. Suppose that the number of claims is a mixed Poisson variable with mean (4) 10.000 and standard deviation 1.000. Find the standard deviation of the mixing variable.
- 5. Let $\{N(t), t \ge 0\}$ be a Pascal process with parameters a, b > 0.
 - (a) Show that

$$\hat{g}_{N(t)}(s) = \left(\frac{b}{b+t(1-s)}\right)^a, \quad s \in (-1,1), t \ge 0.$$

(b) Show that

$$p_k(t) = \binom{a+k-1}{k} \left(\frac{t}{t+b}\right)^k \left(\frac{b}{t+b}\right)^a,$$

i.e. N(t) follows a negative binomial distribution with parameters a and $\frac{t}{t+b}$.

(6)

(4)