Homework assignment for Risk Theory - #6

(Due Thursday, 5/6/2008, 10:15 a.m., H9)

- 1. Use the Panjer algorithm to write R functions for calculating the value of the probability density function p_k of the Poisson, the geometric, the negative binomial and the binomial distribution for k = 0, 1, 2, ... (8)
- 2. Determine the expected value, the variance and the index of dispersion of (6) the negative binomial distribution.

(Hint: Use $\sum_{n=0}^{\infty} {n+\alpha \choose n} z^n = \frac{1}{(1-z)^{\alpha+1}}$ to calculate the generating function)

3. For a portfolio of fire insurance contracts on buildings, the following data is given.

k	Number of policies
n	with k claims
0	103705
1	11632
2	1767
3	255
4	44
5	6
6	2
>7	0
	$\Sigma = 117411$

Table 1	
---------	--

- (a) Estimate the expected value of the number of claims N (per policy) by (3) the mean λ_1 of the empirical distribution and the variance of N by the variance λ_2 of the empirical distribution. Is the Poisson distribution an appropriate model for the number of claims?
- (b) In the following, the result of part (a) will be further analyzed. For (3) this purpose, N is modelled by a Poisson distribution with parameters λ_1 and λ_2 , respectively. Compare both distributions with the empirical distribution of the number of claims.
- (c) Use λ_1 and λ_2 to approximate the distribution of the number of claims (5) by a negative binomial distribution and compare the results to those of part (b).
- 4. Show that a stochastic process $\{X(t), t \ge 0\}$ with independent increments (6) is a Markov process.