SS 20085/6/2008

Homework assignment for Risk Theory - #7

(Due Thursday, 12/6/2008, 10:15 a.m., H9)

1. Let $X = \sum_{i=1}^{N} U_i$ be a Poisson compound risk with $\mathbb{E}U_i^2 < \infty$. Prove the (6) following central limit theorem.

$$\frac{X-\mathbb{E}X}{\sqrt{\mathrm{Var}X}} \overset{d}{\longrightarrow} \mathrm{N}(0,1), \quad \lambda \to \infty.$$

- 2. Consider again the fire insurance on buildings of sheet #6. Table 1 and Table 2 provide information about the number of claims and claim sizes.
 - (a) Estimate the expected value and the variance of the total claim amount (4) X.
 - (b) Determine the reserve capital that is required such that the total claim (4) amount is covered with a probability of at least 95%. Use the Tscheby-schew inequality for this purpose.

k	Number of policies with k claims
0	103705
1	11632
2	1767
3	255
4	44
5	6
6	2
> 7	0
	$\Sigma = 117411$

Table 1

Claim size in the interval	Number of claims	Average claim size
(in 100 €)		(in 100 €)
(0, 50]	51	39
(50, 100]	118	72
(100, 150]	115	120
(150, 200]	77	179
(200, 300]	204	249
(300, 500]	583	399
(500, 800]	1278	647
(800, 1000]	818	898
(1000, 2000]	3569	1401
(2000, 5000]	6056	3009
(5000, 10000]	2162	6729
(10000, 20000]	807	13511
(20000, 50000]	251	27590
(50000, 100000]	60	69426
	$\Sigma = 16149$	3817
	$\Sigma = 16149$	3817

- 3. Determine the cumulative distribution function of the total claim amount (6) for any compound distribution with exponentially distributed claim sizes.
- 4. An individual loss distribution is normal with $\mu = 100$ and $\sigma^2 = 9$. The (6) distribution for the number of claims, N, is given in Table 3. Determine the probability that aggregate claims exceed 100.

n	$\mathbb{P}(N=n)$
0	0.5
1	0.2
2	0.2
3	0.1
	Table 3

Give a reason why modelling losses with the normal distribution (in particular with $\mu = 100$ and $\sigma^2 = 9$) may be reasonable although negative values are possible.