Homework assignment for Risk Theory - #7
(Due Thursday, 12/6/2008, 10:15 am, H9)

1. Let \(X = \sum_{i=1}^{N} U_i \) be a Poisson compound risk with \(\mathbb{E} U_i^2 < \infty \). Prove the following central limit theorem.

\[
\frac{X - \mathbb{E}X}{\sqrt{\text{Var}X}} \xrightarrow{d} N(0, 1), \quad \lambda \to \infty.
\]

2. Consider again the fire insurance on buildings of sheet #6. Table 1 and Table 2 provide information about the number of claims and claim sizes.

 (a) Estimate the expected value and the variance of the total claim amount \(X \).

 (b) Determine the reserve capital that is required such that the total claim amount is covered with a probability of at least 95%. Use the Tchebycheff inequality for this purpose.

 Number of policies

 \[
 \begin{array}{c|c}
 k & \text{Number of policies} \\
 \hline
 0 & 103705 \\
 1 & 11632 \\
 2 & 1767 \\
 3 & 255 \\
 4 & 44 \\
 5 & 6 \\
 6 & 2 \\
 > 7 & 0 \\
 \hline
 \end{array}
 \]

 \(\Sigma = 117411 \)

 Table 1

 Claim size

 \[
 \begin{array}{c|c|c}
 \text{in the interval} & \text{Number of claims} & \text{Average claim size} \\
 \hline
 \text{(in 100 €)} & \text{(in 100 €)} & \\
 \hline
 (0, 50] & 51 & 39 \\
 (50, 100] & 118 & 72 \\
 (100, 150] & 115 & 120 \\
 (150, 200] & 77 & 179 \\
 (200, 300] & 204 & 249 \\
 (300, 500] & 583 & 399 \\
 (500, 800] & 1278 & 647 \\
 (800, 1000] & 818 & 898 \\
 (1000, 2000] & 3569 & 1401 \\
 (2000, 5000] & 6056 & 3009 \\
 (5000, 10000] & 2162 & 6729 \\
 (10000, 20000] & 807 & 13511 \\
 (20000, 50000] & 251 & 27590 \\
 (50000, 100000] & 60 & 69426 \\
 \hline
 \end{array}
 \]

 \(\Sigma = 16149 \quad 3817 \)

 Table 2

3. Determine the cumulative distribution function of the total claim amount for any compound distribution with exponentially distributed claim sizes.

4. An individual loss distribution is normal with \(\mu = 100 \) and \(\sigma^2 = 9 \). The distribution for the number of claims, \(N \), is given in Table 3. Determine the probability that aggregate claims exceed 100.

 \[
 n \quad P(N = n)
 \]

 \[
 \begin{array}{c|c}
 \hline
 0 & 0.5 \\
 1 & 0.2 \\
 2 & 0.2 \\
 3 & 0.1 \\
 \hline
 \end{array}
 \]

 Table 3

Give a reason why modelling losses with the normal distribution (in particular with \(\mu = 100 \) and \(\sigma^2 = 9 \)) may be reasonable although negative values are possible.