Homework assignment for Risk Theory - \#8

(Due Thursday, 19/6/2008, 10:15 a.m., H9)

1. Let $X=\sum_{i=1}^{N} U_{i}$ be the aggregate claim amount in the collective model, where $N \sim \operatorname{Geo}(p)$ and $U \sim \operatorname{Exp}(\delta)$. Let $\bar{F}_{X}(x)=\mathbb{P}(X>x)$.
(a) Show that

$$
\bar{F}_{X}(x)=p e^{-(1-p) \delta x}, \quad x \geq 0
$$

(b) Determine the net stop-loss premium of the reinsurer if the retention limit of the primary insurer is $b>0$.
2. Consider two risks X and Y, where their respective distributions are given by

- $\mathbb{P}(X=0)=0.9$ and $\mathbb{P}(X>t)=0.1 e^{-t}$.
- $\mathbb{P}(Y=0)=0.8$ and $\mathbb{P}(Y>t)=0.2(1+t)^{-3}$.
(a) Show that both risks have the same expectation and variance.
(b) Compare the two risks using the semivariance

$$
\mathbb{E}\left[(X-\mathbb{E} X)_{+}\right]^{2}=\mathbb{E}(X-\mathbb{E} X)^{2} \mathbb{I}_{\{X>\mathbb{E} X\}},
$$

and decide which of these risks is the more dangerous one.
Hint: In part (b), you may use

$$
\int_{0.1}^{\infty}(x-0.1)^{2} \frac{3}{(1+x)^{4}} d x=\frac{10}{11} .
$$

3. Suppose that for the aggregate claim amount $X=\sum_{i=1}^{N} U_{i}$ there is an interval with no aggregate probability, i. e. $\mathbb{P}(a<X<b)=0, a<b$. Show that for $a \leq d \leq b$,

$$
\mathbb{E}\left[(X-d)_{+}\right]=\frac{b-d}{b-a} \mathbb{E}\left[(X-a)_{+}\right]+\frac{d-a}{b-a} \mathbb{E}\left[(X-b)_{+}\right] .
$$

That is, the net stop-loss premium can be calculated via linear interpolation.
4. A reinsurer pays aggregate claim amounts in excess of d, and in return it receives a stop-loss premium $\mathbb{E}\left[(X-d)_{+}\right]$. You are given $\mathbb{E}\left[(X-100)_{+}\right]=15$, $\mathbb{E}\left[(X-120)_{+}\right]=10$, and the probability that the aggregate claim amounts are greater than 80 and less than or equal to 120 is 0 . Determine the probability that the aggregate claim amounts are less than or equal to 80 .

Benefit amount	Number of policies	Probability of 1 claim	Probability of no claim
$\operatorname{Exp}\left(\frac{1}{500}\right)$	3	0.025	0.975

All claims are mutually independent. The insurance company uses the standard deviation principle to calculate the premium, i. e. $\Pi(X)=\mathbb{E} X+$ $K \sqrt{\operatorname{Var}(X)}, K>0$. Assume that the initial capital u is equal to 0 . Which of the following values of K guaranties the solvability of the portfolio with probability 0.95 ?

- $K=0.5$
- $K=0.7$
- $K=0.9$

Show all of your calculations.

