

Voronoi und Johnson-Mehl Mosaike

Alois Fichtl, Julius Vogelbacher | 10. Juni 2008 |

Inhaltsverzeichnis

Einführung

Mosaike Konsistenzbedingungen

Geometrische Strukturen

Facets Interfaces

Erwartungswerte

Intensität Typische Interfaces Charakteristiken von Interfaces

Beispiele

Inhaltsverzeichnis

Einführung Mosaike Konsistenzbedingungen

Geometrische Strukturen

Facets Interfaces

Erwartungswerte

Intensität Typische Interfaces Charakteristiken von Interfac

Beispiele

Mosaike

- ► Mosaik: lückenlose Unterteilung des Raumes (z.B. ℝ^d) in disjunkte Mengen (Zellen, Kristalle)
- Zufallsmechanismus: stochastischer Prozess einfacher geometrischer Objekte, aus denen das Mosaik nach gewissen Regeln erzeugt wird

Voronoi-Mosaike

Definition

Sei $\Phi = \{x_i\}$ ein Punktprozess, dessen Punkte wir Kerne nennen.

Jeder Kern x_i erzeugt eine konvexe Voronoi-Zelle

$$C_i = C(x_i | \Phi) = \{ y \in \mathbb{R}^d | \forall x_j \in \Phi : \|x_i - y\| \le \|x_j - y\| \}$$

 $\{C_i\}$ ist unter gewissen Konsistenzbedingungen ein Voronoi-Mosaik

Voronoi-Mosaike

Abbildung: Voronoi-Mosaike

Johnson-Mehl-Mosaike

Definition

- $\Phi = \{a_i\}$: Punktprozess
- ▶ $a_i = (x_i, t_i) \in \mathbb{R}^d \times [0, \infty)$: Ankünfte
- ► x_i Orte, t_i: Geburtszeiten
- ► $T_i(y) = T(y, a_i) = t_i + \frac{||x_i y||}{v}$: Ankunftszeiten
- ► $C(a_i | \Phi) = \{ y \in \mathbb{R}^d | \forall a_j \in \Phi : T_i(y) \le T_j(y) \} \neq \emptyset$: Zellen
- ► {C(a_i|Φ)} ist unter gewissen Konsistenbedingungen ein Johnson-Mehl-Mosaik

Johnson-Mehl-Mosaike

- x_i beginnt zur Zeit t_i in alle Richtungen mit konstanter Geschwindigkeit zu wachsen
- y wird zur Zeit $T_i(y)$ von x_i erreicht
- ► C(a_i|Φ): Menge der Punkte, die zuerst von x_i erreicht werden

Johnson-Mehl-Mosaike

Abbildung: Johnson-Mehl-Mosaike

Eigenschaften von Mosaiken

- ► Voronoi-Mosaik: Spezialfall eines Johnson-Mehl-Mosaiks für t_i = t ∀ i
- Zellen sternförmig bezüglich ihres Kernes
- ► Zelle konvex ⇔ alle Nachbarn nicht jünger
- ▶ alle Zellen konvex ⇔ alle Zellen gleich alt (Voronoi-Mosaike)

Eigenschaften von Mosaiken

- Johnson-Mehl-Mosaik physikalisch interpretierbar
- breiter Anwendungsbereich
- Verallgemeinerungen mathematisch schwer handhabbar

Konsistenzbedingungen

Sei $\Phi = \{a_i\} = \{(x_i, t_i)\}$ nicht leer, lokal endlich, stationär Im Folgenden wird vorausgesetzt

► (C1)
$$\forall$$
(x, t) $\in \Phi$ \forall u : $||u|| = 1$ \exists (y, s) $\in \Phi$:

$$(y-x) \bullet u > v(s-t)$$

- (C2) $T_j(x_i) \neq t_i \quad \forall i \neq j$
- ▶ (C3) keine m + 1 Kerne in einem (m 1)-dim affinen Unterraum des ℝ^d; m = 1,..., d
- (C4) keine d + 2 Ankünfte in einem beliebigen Punkt zur selben Zeit

Folgerungen aus den Konsistenzbedingungen

- Zellen beschränkt
- Zellen lokal endlich
 d.h. ∀B ⊂ ℝ^d beschränkt: #{i|C_i ∩ B ≠ ∅} < ∞

▶
$$\mathbb{R}^d = \bigcup_i C_i$$

Inhaltsverzeichnis

Einführung Mosaike Konsistenzbedingungen

Geometrische Strukturen Facets

Facets Interfaces

Erwartungswerte

Intensität Typische Interfaces Charakteristiken von Interface

Beispiele

Facets

Definition
$$F_n := \bigcap_{i=0}^m C_i \neq \emptyset$$
, mit $n = d - m$, $m \ge 0$ heißt n-Facet

Abbildung: F₂

Abbildung: F₁

Abbildung: F₀

Eigenschaften von Facets

- F₀ besteht aus einem oder zwei Punkten
- ▶ im Voronoi-Fall ist *F_n* ein konvexes Polytop

Abbildung: F₀

Interface

Definition

Die verbundenen Komponenten von F_n heißen n-Interfaces

- 0-Interface = Ecke von d+1 Zellen
- 1-Interface = Kante von d Zellen
- (d-1)-Interface = Hyperfläche von 2 Zellen

Abbildung: 1 – Interfaces

Voraussetzungen

- Φ f.s nicht leer, stationär
- Φ auf Borel-Menge absolut stetig bzgl. der Verteilung eines Poisson Prozess
- ► ⇒ C1-C4
- Beispiel: Poisson-Prozess

(k-m)-Interface

- ► $L_k \subseteq \mathbb{R}^d$: k-dimensionaler Unterraum
- ► $L_k \cap F_n$: (k-m)-Facet mit Dimension (k-m)
- ► Zusammenhängende Komponenten von L_k ∩ F_n: (k-m)-Interfaces
- $\Phi_p^{(k)}$: Menge der p-Interfaces in L_k

Assoziierter Punkt eines p-Interface

Definition $X \in \Phi_p^{(k)}$ p-Interface in L_k $c(X, a_0, \ldots, a_m | \Phi) \in L_k$ heißt assoziierter Punkt von X, wenn $c(X, a_0, \ldots, a_m | \Phi)$ translationsinvariant Mögliche Wahl:

k = d:
$$c(X, a_0, ..., a_m | \Phi) = \frac{1}{m+1} \sum_{i=0}^m x_i$$

k < d: orthogonale Projektion auf L_k

Inhaltsverzeichnis

Einführung Mosaike Konsistenzbedingungen

Geometrische Strukturen

Facets Interface:

Erwartungswerte

Intensität Typische Interfaces Charakteristiken von Interfaces

Beispiele

Intensität

Definition

Für p = 0, ..., k und m = k - p ist die Intensität von p-Interfaces in L_k definiert durch:

$$I_{\rho}^{(k)} = \frac{1}{(m+1)!\lambda_k(B)} \mathbb{E} \sum_{a_0,\ldots,a_m \in \Phi}^{\neq} \sum_{X \in \Phi_{\rho}^{(k)}: X \subseteq F_n \cap L_k} \mathbf{1}_{[c(X,a_0,\ldots,a_m | \Phi) \in B]}$$

 $B \subseteq L_k$ Borelmenge mit $0 < \lambda_k(B) < \infty$

Anschauung

- ► $I_p^{(k)}$: unabhängig von B, da Φ stationär, Lemma von Haar
- *I*^(k)_p: erwartete Anzahl von p-Interfaces pro Einheitsvolumen
- $I_d^{(d)} =: \lambda$: erwartete Anzahl von Zellen
- \blacktriangleright $I_0^{(k)}$: erwartete Anzahl von Ecken

Typische Interfaces

Sei
$$0 < l_p^{(k)} < \infty$$
, $0 \le p \le k \le d$, $A \in \mathcal{F}$.
Die Palm-Verteilung ist gegeben durch

$$P_p^{(k)}(A) = \frac{1}{(m+1)! I_p^{(k)} \lambda_k(B)}$$

$$\times \mathbb{E} \sum_{a_0,\ldots,a_m \in \Phi}^{\neq} \sum_{X \in \Phi_{\rho}^{(k)} : X \subseteq F_n \cap L_k} \mathbf{1}_{[c(X,a_0,\ldots,a_m | \Phi) \in B, X - c(X,a_0,\ldots,a_m | \Phi) \in A]}$$

Definition

Die zufällige abgeschlossene Menge $C_p^{(k)}$ mit der Verteilung $P_p^{(k)}(A)$ heißt typisches p-Interface in L_k

Typische Zelle vs. Nullpunktzelle

- ▶ Bezeichne $C = C_d^{(d)}$ die typische Zelle
- Sei C die Zelle die einen beliebigen festen Punkt enthält
- ► $P(C \in F) = \lambda \mathbb{E}(\mathbf{1}_{[C \in F]}\lambda_d(C))$ für F translationsinvariant in \mathbb{R}^d

► ⇒ C größer als
$$C$$
,
d.h. $\mathbb{E}\lambda_d(C) \ge \mathbb{E}\lambda_d(C)$

Charakteristiken von Interfaces

Definition
Sei
$$0 \le q \le p \le k$$
:
 $N_{pq}^{(k)} = \mathbb{E}\#\{q\text{-Interfaces in } C_p^{(k)}\}$
z.B. $N_{d0}^{(d)}$ = erwartete Anzahl von Ecken pro Zelle
 $V_{pq}^{(k)} = \mathbb{E} \sum_{X \subseteq C_p^{(k)}q-\text{Interface}} \lambda_q(X)$
z.B. $V_{dd}^{(d)}$ = erwartetes Volumen einer Zelle

Charakteristiken von Interfaces

Definition Für m = k - p sei

$$\mu_{kp} = \mathbb{E} \sum_{a_0, \dots, a_m \in \Phi}^{\neq} \frac{\lambda_p \left(B \cap F \left(a_0, \dots, a_m | \Phi \right) \right)}{(m+1)!} \text{ mit } \lambda_k(B) = 1$$

das erwartete p-Volumen von p-Interfaces pro Einheitsvolumen im L_k

Zusammenhänge

Satz Sei $0 \le q \le p \le k$: $I_p^{(k)} N_{pq}^{(k)} = {\binom{k-q+1}{p-q}} I_q^{(k)}$ $I_p^{(k)} V_{pq}^{(k)} = {\binom{k-q+1}{p-q}} \mu_{kq}$

Beispiele in der Ebene

Beispiele in der Ebene

Beispiele in der Ebene

- $V_{22}^{(2)} = \frac{1}{\lambda}$ (erw. Fläche pro Zelle)
- V⁽²⁾₂₁ = ^{2µ₂₁}/_λ (erw. Kantenlänge pro Zelle, erw. Kantenlänge pro Einheitsfläche)
- $V_{11}^{(2)} = \frac{\mu_{21}}{3\lambda}$ (erw. Kantenlänge einer Kante)
- ► $V_{11}^{(1)} = \frac{1}{\mu_{10}}$ (erw. Durchmesser einer Zelle, erw. Anzahl von Schnittpunkten je Einheitsstrecke)

Beispiele Poisson-Voronoi-Mosaik in der Ebene

μ₂₁ = 2 · √λ (Erwartete Kantenlänge pro Einheitsfläche)
 μ₁₀ = 4·√λ/π (Erwartete Anzahl von Ecken je

Einheitsstrecke)

► $I_1^{(1)} = I_0^{(1)} = \frac{4 \cdot \sqrt{\lambda}}{\pi}$ (Erwartete Anzahl von Kanten, Ecken je Einheitsstrecke)

Beispiele Poisson-Voronoi-Mosaik in der Ebene

Inhaltsverzeichnis

Einführung

Mosaike Konsistenzbedingungen

Geometrische Strukturen

Facets Interfaces

Erwartungswerte

Intensität Typische Interfaces Charakteristiken von Interfac

Beispiele

Poisson-Prozess mit $\lambda = 1$

Abbildung: Poisson-Prozess [0, 20]² mit 391 Punkten

Voronoi-Mosaik

391 Zellen, 1174 Kanten, 727 Ecken

Abbildung: Voronoi-Mosaik [0, 20]²

Histogramm der Ecken

Abbildung: Histogramm der relativen Häufigkeit von Ecken pro Zelle

Dichte der Kantenlänge pro Zelle

Abbildung: Dichte der Kantenlänge pro Zelle

Dichte der Fläche pro Zelle

Abbildung: Dichte der Fläche pro Zelle

Schätzer für λ

- ▶ In der Ebene: $\hat{\lambda} = \frac{\#\text{Zellen}}{\text{Fläche}} = \frac{391}{400} = 0.98$
- ▶ Für *d* > 2 nicht mehr möglich da nicht alle Zellen sichtbar
- Besser: Schnittpunkte mit Test-Geraden ermitteln und daraus λ berechnen

Schätzer für λ

- Ein Schätzer für λ ist $\hat{\lambda} = \frac{1}{c_{d} \cdot (\frac{L"ange der Geraden}{\#Schnittpunkte})^{d}}$
- c_d Konstante die vom Punktprozess abhängt

Heuristische Begründung

Betrachte regelmässiges n-Eck dann ist Fläche = Durchmesser²·c_n

•
$$\lambda = \frac{1}{V_{22}^{(2)}} = \frac{1}{(V_{11}^{(1)})^2 \cdot c_2}$$

- c₂ berechnen das obige Gleichung erfüllt
- $c_2 = 16/(\pi)^2$ für Voronoi-Mosaike in der Ebene
- ▶ Analoges geht auch für c_d und Johnson-Mehl-Mosaike

Voronoi-Mosaik

Abbildung: Mit 4 Geraden um λ zu schätzen

Beispiel zur λ Schätzung

• Länge der Geraden =
$$4 \cdot 20 = 80$$

Anzahl der Schnittpunkte = 24+27+23+26 = 100

•
$$\hat{\lambda} = \frac{1}{(\frac{80}{100})^2 * \frac{16}{\pi^2}} = 0.96$$

Literaturverzeichnis

► J.Møller (1999):

Topics in Voronoi und Johnson-Mehl tessellations In: O.Barndorff-Nielsen, W.Kendall, M.N.M.Lieshout (eds.): Stochastic Geometry. Likelihood and Computation, Chapman&Hall/CRC

- J.Møller (1992) Random Johnson-Mehl tessellations. Adv.Appl.Prob.24, 814-844
- R.Schneider, W.Weil (2000), Stochastische Geometrie, Teubner Stuttgart
- Stochastic Geometry Version 4.1, TU Bergakademie Freiberg Institut f
 ür Stochastik