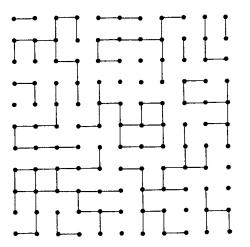
Seminar "Zufällige Netzwerke"

Properties of connectivity clusters

Julia Hocke Sabine Ott

Einleitung

Abbildung: Zufallsgitter



Source: M. Franceschetti and R. Meester(2007) "Random Networks for Communication".Cambridge University Press, page 5

Definition:

Ein Ereignis A heißt wachsend, falls A immer noch gilt, wenn man eine neue Kante hinzufügt.

Eine Zufallsvariable heißt wachsend, falls ihr Wert nicht fällt, wenn man eine neue Kante hinzufügt.

Beispiel: Das Ereignis, dass es einen Pfad zwischen 2 Knoten gibt, ist wachsend.

Definition:

Ein Ereignis A heißt wachsend, falls A immer noch gilt, wenn man eine neue Kante hinzufügt.

Eine Zufallsvariable heißt wachsend, falls ihr Wert nicht fällt, wenn man eine neue Kante hinzufügt.

Beispiel: Das Ereignis, dass es einen Pfad zwischen 2 Knoten gibt, ist wachsend.

► **Lemma 1:** (Harris-FKG-Ungleichung) Falls A und B wachsende Ereignisse sind, dann gilt:

 $\mathbb{P}_{n}(A \cap B) > \mathbb{P}_{n}(A)P_{n}(B).$

Falls X, Y wachsende Zufallsvariablen sind, mit $\mathbb{E}(X^2) < \infty$ und $\mathbb{E}(Y^2) < \infty$, dann gilt:

$$\mathbb{E}_{p}(XY) \geq \mathbb{E}_{p}(X)\mathbb{E}_{p}(Y),$$

d.h. dass X und Y positiv korreliert sind.

▶ Lemma 2:

Für alle $0 gibt es eine Konstante <math>c \in \mathbb{N}$, so dass die Anzahl der unendlichen Cluster auf dem Zufallsgitter f.s. gleich c ist.

▶ Lemma 2:

Für alle $0 gibt es eine Konstante <math>c \in \mathbb{N}$, so dass die Anzahl der unendlichen Cluster auf dem Zufallsgitter f.s. gleich c ist.

▶ Lemma 3:

Für alle $0 ist die Anzahl der unendlichen Cluster f.s 0, 1 oder <math>\infty$.

▶ Lemma 2:

Für alle $0 gibt es eine Konstante <math>c \in \mathbb{N}$, so dass die Anzahl der unendlichen Cluster auf dem Zufallsgitter f.s. gleich c ist.

▶ Lemma 3:

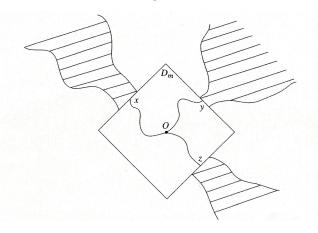
Für alle $0 ist die Anzahl der unendlichen Cluster f.s 0, 1 oder <math>\infty$.

► **Theorem 1:**(*Eindeutigkeitsaussage*) Sei Q das Ereignis, dass es höchstens eine unendliche verbundene Komponente auf dem Kantenperkolationsmodell gibt. Es gilt

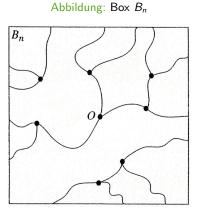
$$\mathbb{P}_p(Q) = 1 \quad \forall p$$

Beweis Theorem 1

Abbildung: Raute D_m



Source: M. Franceschetti and R. Meester(2007) "Random Networks for Communication". Cambridge University Press, page 102



Source: M. Franceschetti and R. Meester(2007) "Random Networks for Communication". Cambridge University Press, page 103

► Theorem 2:

Für Kantenperkolation auf dem 2-dimensionalen quadratischen Zufallsgitter gilt:

$$p_c \geq \frac{1}{2}$$

► Theorem 2:

Für Kantenperkolation auf dem 2-dimensionalen quadratischen Zufallsgitter gilt:

$$p_c \geq \frac{1}{2}$$

► **Lemma 4:**(Quadratwurzel-Trick)
Seien A₁, ..., A_m wachsende Ereignisse mit gleicher Wahrscheinlichkeit.
Es gilt:

$$\mathbb{P}_{
ho}(A_1) \geq 1 - (1 - \mathbb{P}_{
ho}(igcup_{i=1}^m A_i))^{rac{1}{m}}$$

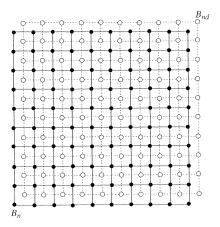
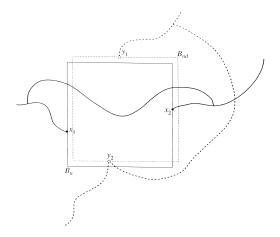


Abbildung: Duale Box um $(\frac{1}{2}, \frac{1}{2})$ verschoben

Abbildung: Box B_n und die duale Box B_{nd}



Definition:

 B_p^{\leftarrow} sei das Ereignis, dass es einen Pfad innerhalb von B_p gibt, der die linke Seite von B_n mit der rechten Seite verbindet.

 $0 \leftrightarrow \partial B_{2n}$ sei das Ereignis, dass es einen Pfad gibt, der den Ursprung mit dem Rand von B_{2n} verbindet.

Lemma 5:

Für $p < p_c$ und $\forall n \exists \beta(p) > 0$:

$$\mathbb{P}_p(0 \leftrightarrow \partial B_{2n}) \leq e^{-\beta(p)n}$$

$$\mathbb{P}_p(B_n^{\leftrightarrow}) \leq (n+1)e^{-\beta(p)n}$$

▶ Lemma 5:

Für
$$p < p_c$$
 und $\forall n \exists \beta(p) > 0$:

$$\mathbb{P}_p(0 \leftrightarrow \partial B_{2n}) \leq e^{-\beta(p)n}$$

$$\mathbb{P}_p(B_n^{\leftrightarrow}) \leq (n+1)e^{-\beta(p)n}$$

► Lemma 6:

Für
$$p > p_c$$
 und $\forall n \exists \beta(1-p) > 0$:

$$\mathbb{P}_p(B_n^{\leftrightarrow}) \geq 1 - (n+1)e^{-\beta(1-p)n}$$

► Theorem 3:

Die Perkolationsschwelle für Kantenperkolation auf dem quadratischen Gitter ist beschränkt durch $p_c \leq \frac{1}{2}$.

Theorem 3:

Die Perkolationsschwelle für Kantenperkolation auf dem quadratischen Gitter ist beschränkt durch $p_c \leq \frac{1}{2}$.

► Erinnerung: Theorem 2

Die Perkolationsschwelle für Kantenperkolation auf dem quadratischen Gitter ist beschränkt durch $p_c \geq \frac{1}{2}$.

Theorem 3:

Die Perkolationsschwelle für Kantenperkolation auf dem quadratischen Gitter ist beschränkt durch $p_c \leq \frac{1}{2}$.

► Erinnerung: Theorem 2

Die Perkolationsschwelle für Kantenperkolation auf dem quadratischen Gitter ist beschränkt durch $p_c \geq \frac{1}{2}$.

Daraus folgt:

Theorem 4:

Für Kantenperkolation auf dem quadratischen Gitter gilt: $p_c = \frac{1}{2}$.

M. Franceschetti and R. Meester(2007):

"Random Networks for Communication". Cambridge University Press