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http://www.doc.gold.ac.uk/~mas01ds/cis338/index.html
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Mining Association Rules

Mining Frequent Pattern  Mining Frequent Pattern  

Frequent 
Sequential pattern

Frequent 
Sequential pattern

Frequent patterns:Frequent patterns:

Frequent itemsetFrequent itemsetMilk, eggs, butter often observed

buying computer , buying printer (after 2 months), buying scanner 
(after 6 months) 

often observed over the time

Frequent itemsets and frequent sequential patterns play a very import role in
Mining Association

Frequent itemsets and frequent sequential patterns play a very import role in
Mining Association
Famous application: Market Basket Transaction

TID Items

1
2
3
4
5

bread, milk
bread, meat, orange juice, eggs
milk, meat, orange juice, cola
bread, milk, meat, orange juice
bread, milk, meat, cola

ExampleExample
{ Milk }  { meat }

{ Meat }  { Orange juice }
Association rules

The rules  show that apparently there is a strong 
relationship between buying of milk and meat as well 
meat and orange juice
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Mining Association Rules

Association Rules (AR) Association Rules (AR) 

Binary representation of market basket dataBinary representation of market basket data

TID bread milk meat Orange 
juice

eggs cola

1
2
3
4
5

1
1
0
1
1

1
0
1
1
1

0
1
1
1
1

0
1
1
1
0

0
1
0
0
0

0
0
1
0
1

Total 4 4 4 3 1 2

ignore quantity, 
Price, expiration 
date, supplier, ingredient etc. 

ignore quantity, 
Price, expiration 
date, supplier, ingredient etc. 

Problems in AR-Mining:
• AR-mining from large datasets is pretty time consuming
• mined Associations could be spurious because may happen by chance

Problems in AR-Mining:
• AR-mining from large datasets is pretty time consuming
• mined Associations could be spurious because may happen by chance

Notations: 
I = { i1, i2, … im } set of all  items
T = {t1, t2, … tN }   set of all transactions
ti contains a subset of items of I
{ i1, i2,..ik }: k-itemset  
Example: { milk, meat, eggs } : 3-ietemset

X: Itemset
ρ(X) = number of transactions contin X 

Example:  in the table 
ρ {bread, milk } = 3  ρ {eggs, cola } = 0
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Mining Association Rules

Association Rules (AR) Association Rules (AR) Support and Confidence of an AR-RuleSupport and Confidence of an AR-Rule

Definition:
X Y   ( X is associated to Y)  is called an AR 
X and Y are disjoint itemsets : X ∩ Y = ø

Definition (support and confidence  of an AR-Rule)

Definition:
X Y   ( X is associated to Y)  is called an AR 
X and Y are disjoint itemsets : X ∩ Y = ø

Definition (support and confidence  of an AR-Rule)

Percentage of the transactions  
contain both X and Y in the 
whole transactions

ρ ( X & Y)

N
Support , s( X Y) =

Probability of (X & Y) 
appear together

Probability of (X & Y) 
appear together

ρ ( X & Y)

ρ (x)
Confidence, c ( X  Y ) = 

Percentage of the transactions  
containing both X and Y  in the 
transactions contain X Conditional probability 

of Y by given X
Conditional probability 
of Y by given X

transactions contain X

0 100%
Whole transactions

Support

0 100%
Confidence
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Mining Association Rules

Association Rules (AR) Association Rules (AR) Support and Confidence of an AR-RuleSupport and Confidence of an AR-Rule
ExampleExample TID bread milk meat Orange 

juice
eggs cola

1
2
3
4
5

1
1
0
1
1

1
0
1
1
1

0
1
1
1
1

0
1
1
1
0

0
1
0
0
0

0
0
1
0
1

Total 4 4 4 3 1 2

Rule: 
{ milk, meat } {orange Juice }

X  Y

X = { milk, meat }  Y= {orange Juice}

ρ ( X& Y ) = ρ { milk, meat, orange juice } = 2

ρ ( X ) = ρ { milk, meat } = 3 

ρ ( X & Y)

N
Support , s( X Y) = = 2/5 = 40%

ρ ( X & Y)

ρ (X)
confidence , c( X Y) = = 2/3 = 67%

Rule:
{meat, orange juice } {eggs}

S= 20%, c= 33%

Rule:
{bread}  {milk}

S = 60%  C = 75%

Rule:
{bread}  {milk}

S = 60%  C = 75%

Rule: 
{eggs} {cola}

S = 0% c= 0%

Rule: 
{eggs} {cola}

S = 0% c= 0%
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Mining Association Rules

Association Rules (AR) Association Rules (AR) AR-DiscoveryAR-Discovery

Definition:

Given: a set of transactions T          Find: Association Rules having :

Support  ≥ sup_min and   Confidence ≥ conf_min

sup_min: given support threshold   conf_min : given confidence threshold

Definition:

Given: a set of transactions T          Find: Association Rules having :

Support  ≥ sup_min and   Confidence ≥ conf_min

sup_min: given support threshold   conf_min : given confidence threshold

Methods of AR-MiningMethods of AR-Mining
Brute-force approach: calculate support and confidence for every possible rules
Problem: many many rules
A dataset with 10 items would generate 57000 rules; 
a department store could have more than 10.000 items 

Brute-force approach: calculate support and confidence for every possible rules
Problem: many many rules
A dataset with 10 items would generate 57000 rules; 
a department store could have more than 10.000 items 
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Mining Association Rules

Association Rules (AR) Association Rules (AR) AR-DiscoveryAR-Discovery

Rule Pruning before computing  support and confidenceRule Pruning before computing  support and confidence

Example:  Consider the itemset

{ orange juice, meat, milk }

the following AR-Rules  involve the same 
Itemset:

{ orange juice, meat } { milk }
{ orange juice, milk }  { meat }
{ meat, milk } {orange juice}
{orange juice { meat, milk }
{ milk } { orange juice, meat }   
{ meat }  { orange juice, milk }

Example:  Consider the itemset

{ orange juice, meat, milk }

the following AR-Rules  involve the same 
Itemset:

{ orange juice, meat } { milk }
{ orange juice, milk }  { meat }
{ meat, milk } {orange juice}
{orange juice { meat, milk }
{ milk } { orange juice, meat }   
{ meat }  { orange juice, milk }

TID bread milk meat orange 
juice

eggs cola

1
2
3
4
5

1
1
0
1
1

1
0
1
1
1

0
1
1
1
1

0
1
1
1
0

0
1
0
0
0

0
0
1
0
1

Total 4 4 4 3 1 2

Have the same Support 40%Have the same Support 40%

It means : if we define a sup_min of  e. g. 50% , after calculating the support of the first 
rule (40%) we see that we can prune all the others rule before we calculate their support and 
confidence

It means : if we define a sup_min of  e. g. 50% , after calculating the support of the first 
rule (40%) we see that we can prune all the others rule before we calculate their support and 
confidence
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Mining Association Rules

Association Rules (AR) Association Rules (AR) AR-DiscoveryAR-Discovery

Viewing the AR-Mining as a two steps Process:
(adopted by many AR-Mining algorithms)
1. Frequent Itemset Generation (FIG)
2. Rule Generation

Viewing the AR-Mining as a two steps Process:
(adopted by many AR-Mining algorithms)
1. Frequent Itemset Generation (FIG)
2. Rule Generation

The aim of FIG is to find all itemsets with support ≥ sup_min
Such itemsets called frequent itemsets (sometimes large itemsets) 

The aim of Rule Generation is to extract from  frequent itemsets the rules with 
Confidence ≥ conf_min; such rules are called  strong rules

The aim of FIG is to find all itemsets with support ≥ sup_min
Such itemsets called frequent itemsets (sometimes large itemsets) 

The aim of Rule Generation is to extract from  frequent itemsets the rules with 
Confidence ≥ conf_min; such rules are called  strong rules

In the past years a lot of attempts put to find efficient methods for generating
the frequent itemsets

In the past years a lot of attempts put to find efficient methods for generating
the frequent itemsets
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Mining Association Rules

Association Rules (AR) Association Rules (AR) AR-DiscoveryAR-Discovery Frequent itemset generationFrequent itemset generation

Example 
Consider itemset  { a, b, c, d, e }

n=5  number of candidat itemsets = 31

a    b     c     d     e

ab ac    ad   ae bc bd be   cd ce de 

abc abd abe acd ace    ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Example 
Consider itemset  { a, b, c, d, e }

n=5  number of candidat itemsets = 31

a    b     c     d     e

ab ac    ad   ae bc bd be   cd ce de 

abc abd abe acd ace    ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Candidate Itemset
Generally for an itemset with n items,  potentially 2   - 1 
candidate itemsets can be generated

Candidate Itemset
Generally for an itemset with n items,  potentially 2   - 1 
candidate itemsets can be generated

n
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Mining Association Rules

Association Rules (AR) Association Rules (AR) AR-DiscoveryAR-Discovery Reduce candidate itemsetsReduce candidate itemsets

Apriori – Principal (1)
• All of the subsets of a frequent itemset must be frequent itemsets too

Apriori – Principal (1)
• All of the subsets of a frequent itemset must be frequent itemsets too

a      b      c      d      e

ab ac      ad      ae bc bd be     cd ce de

abc abd abe acd ace      ade bcd bce bde cde
abcd abce abde acde bcde

abcde

Frequent 
itemset

Frequent 
itemset
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Mining Association Rules

Association Rules (AR) Association Rules (AR) AR-DiscoveryAR-Discovery Reduce candidate itemsetsReduce candidate itemsets

Apriori – Principal (2)
•All of the supersets of an infrequent itemset must be infrequent itemsets too

Apriori – Principal (2)
•All of the supersets of an infrequent itemset must be infrequent itemsets too

a      b      c      d      e

ab ac      ad      ae bc bd be     cd ce de 

abc abd abe acd ace      ade bcd bce bde cde

abcd abce abde acde bcde

abcdeinfrequent 
itemset

infrequent 
itemset

Support-based 
Pruning

Support-based 
Pruning
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Mining Association Rules

Association Rules (AR) Association Rules (AR) AR-DiscoveryAR-Discovery Apriori-Algorithm (AA)Apriori-Algorithm (AA)

Frequent itemset generation in AAFrequent itemset generation in AA
TID Items

1
2
3
4
5

bread, milk
bread, meat, orange juice, eggs
milk, meat, orange juice, cola
bread, milk, meat, orange juice
bread, milk, meat, cola

ExampleExample

Given: sup_min = 60% ~  
min support count = 3

Given: sup_min = 60% ~  
min support count = 3

Item Count

Orange 
juice

3

bread 4

cola 2

meat 4

milk 4

eggs 1

Itemset Count

{orange  juice, bread} 2

{orange juice, meat} 3

{orange juice, milk} 2

{bread, meat} 3

{bread, milk} 3

{meat, milk} 3

Itemset Count

{bread, meat,  milk} 2

Candidate itemsets  
(up to size 3) 

Candidate itemsets  
(up to size 3) 

6 6        6  
1        2        3+ + = 6 + 15 + 20 = 41

6 4         
1        2        + + 0 = 6 + 6 +0 = 12

Brute-force strategy

Apriori principal
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Mining Association Rules

Association Rules (AR) Association Rules (AR) AR-DiscoveryAR-Discovery Apriori-Algorithm (AA)Apriori-Algorithm (AA)

Rule  generation in AARule  generation in AARule generation in AARule generation in AA

ρ ( X & Y)

ρ (x)
Conf ( X  Y ) = 

N *  Support ( X & Y)

N *  Support ( X )

Support ( X & Y)

Support ( X )

=

=

For each frequent itemset f, generate all non-empty subsets of f
For every non-empty subset s of f 
Generate rule s ( f – s ) if  support ( f ) / support ( s ) ≥ conf_min

For each frequent itemset f, generate all non-empty subsets of f
For every non-empty subset s of f 
Generate rule s ( f – s ) if  support ( f ) / support ( s ) ≥ conf_min

Notes:
1- Rule generation in AA is less computing time consuming as frequent 

itemsets generation, because the needed supports are already calculated
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Mining Association Rules

Association Rules (AR) Association Rules (AR) AR-DiscoveryAR-Discovery Apriori-Algorithm (AA)Apriori-Algorithm (AA)

Rule  generation in AARule  generation in AARule generation in AARule generation in AA Example: Given: conf_min = 80%Given: conf_min = 80%

Item Count

orange 
juice

3

bread 4

meat 4

milk 4

{meat, milk}

3

{bread, milk} 3

{bread, meat}

3
{orange juice, meat}

CountItemset Itemset Count

{meat, orange juice} 3

We consider the 
frequent itemset

We consider the 
frequent itemset

Conf of  { meat } { orange juice} = 3/4 = 75%

Conf of  { orange juice } { meat } =3/3 = 100%

Conf of  { meat } { orange juice} = 3/4 = 75%

Conf of  { orange juice } { meat } =3/3 = 100%
{ orange juice} { meat }{ orange juice} { meat }

Generated AR from  the {  meat, orange juice }

3
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• Clementine Demo

• Basklinks_association.str
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