Statistical Methods in Data Mining

Professor Dr. Gholamreza Nakhaeizadeh

content

Decision Trees

- Introduction
- Example: Credit Rating
- Example: Computer buyers
- Attribute selection measure in Decision Trees
- Construction of Decision Trees
- Gain Ratio
- Gini Index
- Overfitting
- Pruning

Decision Trees (DT)

Introduction

- DT are classification tools
- Class Variable (Target Variable): Nominal
- Attributes: Nominal or continuous-valued
- Top Down construction based on heuristic methods by using training data (Greedy instead completely search : tends to find good solutions quickly, but not always optimal ones)

	Income >2000	Car	Gender	Credit Rating
Customer 1	no	yes	F	bad
Customer 2	no statement	no	F	bad
Customer 3	no statement	yes	М	good
Customer 4	no	yes	М	bad
Customer 5	yes	yes	М	good
Customer 6	yes	yes	F	good
Customer 7	no statement	yes	F	good
Customer 8	yes	no	F	good
Customer 9	no statement	no	М	bad
Customer 10	no	no	F	bad

	Income >2000	Car	Gender	Credit Rating
Customer 1	no	yes	F	bad
Customer 2	no statement	no	F	bad
Customer 3	no statement	yes	М	good
Customer 4	no	yes	М	bad
Customer 5	ves	yes	М	good
Customer 6	ves	yes	F	good
Customer 7	no statement	yes	F	good
Customer 8	ves	no	F	good
Customer 9	no statement	no	М	bad
Customer 10	no	no	F	bad

	Income >2000	Car	Gender	Credit Rating
Customer 1	no	yes	F	bad
Customer 2	no statement	no	F	bad
Customer 3	no statement	yes	М	good
Customer 4	no	yes	М	bad
Customer 5	yes	yes	М	good
Customer 6	yes	yes	F	good
Customer 7	no statement	yes	F	good
Customer 8	yes	no	F	good
Customer 9	no statement	no	M	bad
Customer 10	no	no	F	bad

	Income >2000	Car	Gender	Credit Rating
Customer 1	no	yes	F	bad
Customer 2	no statement	no	F	bad
Customer 3	no statement	yes	М	good
Customer 4	no	yes	М	bad
Customer 5	yes	yes	М	good
Customer 6	yes	yes	F	good
Customer 7	no statement	yes	F	good
				\smile
Customer 8	yes	no	F	good
Customer 9	no statement	no	М	bad
Customer 10	no	no	F	bad

	Income >2000	Car	Gender	Credit Rating
Customer 1	no	yes	F	bad
Customer 2	no statement	no	F	bad
Customer 3	no statement	yes	М	good
Customer 4	no	yes	М	bad
Customer 5	yes	yes	М	good
Customer 6	yes	yes	F	good
Customer 7	no statement	ves	F	good
Customer 8	yes	no	F	good
Customer 9	no statement	no	М	bad
Customer 10	no	no	F	bad

	Income >2000	Car	Gender	Credit Rating
Customer 1	no	yes	F	bad
Customer 2	no statement	no	F	bad
Customer 3	no statement	yes	М	good
Customer 4	no	yes	М	bad
Customer 5	yes	yes	М	good
Customer 6	yes	yes	F	good
Customer 7	no statement	yes	F	good
Customer 8	yes	no	F	good
Customer 9	no statement	no	М	bad
Customer 10	no	no	F	bad

				Income >2000	Car	Gender	Credit Rating
						-	
Classifier		_	Customer 1	no	yes		Dad
If income> 2000 = ves	Credit Rate=000	d	Customer 2	no statement	no	F	bad
n meomer 2000 – yes		u l					
If income> 2000 = no	Credit Rate=bad	k	Customer 3	no statement	yes	М	good
If income= no statement &			Customer 4	no	yes	M	bad
car=ves	Credit Rate=000	bd					
cu -ycs			Customer 5	yes	yes	М	good
If incomes no statement ?							
ii income= no statement &			Customer 6	yes	yes	F	good
car=no	Credit Rate=bac		Customor 7	no statomont	VOS		good
				no statement	yes	r	good
This classifier can be regarde	d as an		Customer 8	yes	no	F	good
Inductive expert systems							
. ,			Customer 9	no statement	no	М	bad
Rating new Customers			Customer 10	no	no	F	bad
- Pating an away to patomorphish	:	lood					
Rating a new customer with	income $3000 = gc$	DOC					
Pating a new customer who	has no car						
 Rating a new customer who 	has no car						
and made no income statem	ient = bad						
•							10

Credit rating: decision tree construction

11

Credit rating: pruned decision tree

Perhaps due to background knowledge of credit officer Clementine Demo

Credit_toy2.str

Clementine Demo

German-credit1.str

Example: Computer buyers

Source: Jiawei Han, et al. 2006

Nr.	Age	Income	Student?	Credit Rating	Buys Computer	
1	youth	high	no	fair	no	
2	youth	high	no	excellent	no	
3	middle aged	high	no	fair	yes	
4	senior	medium	no	fair	yes	
5	senior	low	yes	fair	yes	
6	senior	low	yes	excellent	no	
7	middle aged	low	yes	excellent	yes	
8	youth	medium	no	fair	no	
9	youth	low	yes	fair	yes	
10	senior	medium	yes	fair	yes	
11	youth	medium	yes	excellent	yes	
12	middle aged	medium	no	excellent	yes	
13	middle aged	high	yes	fair	yes	Table:1 Computer buyers
14	senior	medium	no	excellent	no	15

information Gain (IG) Introduction

IG is based on information theory due to Shannon

Example 1 : Finding a certain number between 1 and 1000 by asking question

1. Alternative

Choose randomly a number between 1 and 1000 and ask whether it is the right one. No optimal method, because in the worst case 999 questions are needed to find the right number.

In this case, if the first answer is "no", the IG has been very little. Because, there are still 999 alternative numbers between them the number we are looking for is.

information Gain (IG) (continues)

Second alternative

The first question should be: is the number \leq 500?

The IG of this question is too higher because after the answer we have to search between 500 numbers instead of 1000.

If the answer of this question is positive, the next question is, as it may be expected: Is the number ≤ 250 ? and so on .

In this example, IG of each new question is equal to the amount of information one gains by asking this question.

Higher the IG of a question (attribute) \rightarrow quicker to reach the goal.

information Gain (IG) (continues)

Definition of Entropy

Y: a random variable and P(Y=b1)=p1,.....P(Y=bm)=pm

information Gain (IG) (continues)

Remark1

Definition (1) is due to Shannon in conjunction with information theory and aims to find the number of needed bits to communicate a messages (for this reason the base of used logarithm is 2)

Remark 2

(In example for m=1000 we get pi = 1/1000) and

I (Y) in (1) is equal nearly to 10 which is the average number of the

question that one needs to find a certain number

```
between 1 and 1000
```

information Gain (IG) (continues)	Nr.	Buys Computer
Example 2: Computer buyers	1	no
	2	no
Two classes: Buys Computer (yes or no)	3	yes
 C1: class 1 (yes), C2: class 2 (no) N1: Numbers of tuples in C1= 9 	4	yes
• N2: Numbers of tuples in $C2 = 5$	5	yes
• N=N1+N2=14	6	no
 p1: probability that a tuple belongs to C1 	7	yes
 p2: probability that a tuple belongs to C2 	8	no
• Probability should be approximated by the portions •Thus: $p_1=N_1/N = 9/14$ and $p_2=N_2/N = 5/14$	9	yes
	10	yes
Using relation (1) results to	11	yes
	12	yes
$I(Y) = -9/14 \text{ Log}_{2}(9/14) - 5/14 \text{ Log}_{2}(5/14) = 0.94$	13	yes
This is the Expected information (entropy) needed	14	no

to classify a tuple.

Χ	Y
high	yes
medium	no
low	yes
high	no
high	no
low	yes
medium	no
high	yes
Table 2 : Footb	all Fan
	X high medium low high high low medium high Table 2 : Footb

Entropy of Y for X = b:
$$I(Y | X = b)$$

Using this definition and (1) leads to: $I(Y | X = high) = 1$
 $I(Y | X = medium) = 0$
 $I(Y | X = low) = 0$ (2)

information Gain (IG) (continues)

Conditional Entropy

Generally:

$$I(Y|X) = \sum_{i} p(X = bi) I(Y|X = bi)$$
 (3) Called average conditional entropy

From **Table 2** and relation (2) we can get: And from this table: I(Y|X) = 0.5*1+0.25*0+0.25*0 = 0.5X = bi P(X=bi) high 0.5 medium 0.25 low 0.25

we have seen already I(Y) = 1 and now by using the values of X we have got I(Y|X) = 0.5 \longrightarrow the needed information reduced to half and we have got 1- 0.5 = 0.5 "Information Gain"

I(Y|X=bi)

1

0

0

information Gain (IG) (continues)

Generally:

IG(Y|X) = I(Y) - I(Y|X) (4)

(4) called information gained by using X

Inserting (3) in (4) leads to:

 $IG (Y|X) = I(Y) - \sum p_i (X = bi) I(Y | X = bi)$ (5)

In the relation (5), like before p (x=bi) can be approximated by Ni/N, where Ni is the frequently of the value xi in X.

(5) Is one of the measures that has been used for attribute selection in Decision trees. The Decision Tree algorithms ID3 e.g. uses this measure

Construction of Decision Trees

Root selection: using the attribute with highest information gain

Example: Computer Buyers

In the following we show the target variable (computer Buyers) with Y and the attributes (Age, Income..) with X

Now we calculate IG (Y) regarding attribute **age** IG (Y) = I(Y) - I (Y| age) **(6)**

```
with
I(Y|age) = p (youth)* I (Y | age=youth) +
p (middle aged)* I (Y | age=middle aged) +
```

p (senior)* I (Y | age=senior)

we have seen already that I(Y)=0.94 and for Attribute age we have p (youth) = 5/14, p (senior)= 5/14 and p (middle aged) = 4/14

-					-
Nr.	Age	Income	Student?	Credit Rating	Buys Computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle aged	medium	no	excellent	yes
13	middle aged	high	yes	fair	yes
14	senior	medium	no	excellent	no
	Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Nr.Age1youth2youth3middle aged4senior5senior6senior7middle aged8youth9youth10senior11youth12middle aged13middle aged14senior	Nr.AgeIncome1youthhigh2youthhigh3middle agedhigh3middle agedhigh4seniormedium5seniorlow6seniorlow7middle agedlow8youthmedium9youthlow10seniormedium11youthmedium12middle agedhigh13middle agedhigh14seniormedium	Nr.AgeIncomeStudent?1youthhighno2youthhighno3middle agedhighno4seniormediumno5seniorlowyes6seniorlowyes7middle agedlowyes8youthmediumno9youthlowyes10seniormediumyes11youthmediumyes12middle agedmediumno13middle agedhighyes14seniormediumno	Nr.AgeIncomeStudent?Credit Rating1youthhighnofair2youthhighnoexcellent3middle agedhighnofair4seniormediumnofair5seniorlowyesfair6seniorlowyesexcellent7middle agedlowyesexcellent8youthmediumnofair9youthlowyesfair10seniormediumyesfair11youthmediumyesfair12middle agedmediumnoexcellent13middle agedhighyesfair14seniormediumnoexcellent

Х

γ

Root selection: continues

On the other hand : p (Y=no | age=youth)=3/5 p (Y= yes | age = youth) = 2/5

It means.

I (Y | age=youth) = (8) -3/5 Log (-3/5) -2/5 Log (-2/5)= 0,968

From (7) and (8) we get:

P(youth)* I (Y | age= youth) = 5/14 * 0.968 = 0,346

In the same way we can calculate the other components of (6) : IG (Y) = I (Y) – I (Y | age) = 0.246

age (Y) = I(Y) - I(Y | age) = 0.246

and for the other attributes:

IG(Y) = 0.029 income

IG (Y) = 0.151

student

IG (Y) = 0.048

Credit Rating

Nr.	Age	Income	Student?	Credit Rating	Buys Computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle aged	medium	no	excellent	yes
13	middle aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

IG of the attribute *age* is at the highest; Splitting of the DT starts by using this attribute as the root and its values (senior, middle aged, and youth) as the first branches of the tree

Construction of Decision Trees

splitting

Nr.	Age	Income	Student?	Credit Rating	Buys Computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle aged	medium	no	excellent	yes
13	middle aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Construction of Decision Trees

Splitting (continues)

Nr.	Age	Income	Student?	Credit Rating	Buys Computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle aged	medium	no	excellent	yes
13	middle aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Notice: Attribute income wasn't use

Decision Trees as classifiers for new tuples

- 1. Age 37 = buyer
- 2. Age 55 with excellent credit rating = no buyer
- 3. Age 18 but no student = no buyer

4. ...

Construction of Decision Trees

3 Persons 7 Persons

8 Persons

29

2 Persons

Other selection measure Gain Ratio

IG has a significant drawback: it does not take into account the number of attribute values

N

Suppose that we have just N tuples and between the attributes we have a discrete-valued attribute A with values a1, a2,...ai,... aj,....aN with ai \neq aj for \forall i and j In this case we would have by splitting using A, so many partitions as tuples namely N:

For this case $I(Y | A) = -\sum 1/N Log(Y | ai) = 0$; Regarding: IG(A) = I(Y) - I(Y|A)

means A would have the maximal IG .

This extreme case shows very well that the IG prefers selection attributes with a large number of partitions.

Other selection measure

Gain Ratio (continues)

To overcome this problem Quinlan suggests for C4.5 (extension of ID3 algorithm) using Gain Ratio instead of Information Gain. Gain Ratio is defined as: GR(A) = IG (A)/I (A)with

$$I(A) = -\sum_{i=1}^{n} n_i / N * Log(n_i / N)$$

ni/N is the portion of the tuples with attribute value a

Nr.	Age	Income	Student?	Credit Rating	Buys Computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle age	medium	no	excellent	yes
13	middle aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

a1 = highn1/N = 4/14a2 = mediumn2/N = 6/14

 $a_3 = low$

 $n_2/N = 6/14$ \rightarrow I (A) = -4/14 * Log 4/14 - 6/14 * Log 6/14 - 4/14 Log 4/14 = 0.926

we had calculated IG (income) = 0.029 thus : GR(A) = 0.029/0.926 = 0.031

GINI Index: Measure of Impurity

Gini Index (Gini) Gini Index of a node

- **n** = Number of tuples at the node k
- **n**_j = Number of the tuples belong to the class j at the node k
- n_j/n = relative frequently of the class j at the node k

Gini (k)= 1-
$$\sum_{j}$$
 (n_j/ n| k)²

For two classes:

n1= 0 n2= n	→ Gini = 0	→ lowest impurity
$n_1/n = \frac{1}{2} n_2/n = \frac{1}{2}$	→ Gini = 1/2	→ highest impurity

Further examples:

Gini Index Gini Index as attribute selection measure

Example

Gini Index

 $N_1 / N = 40/100 = 0.4$ $N_2 / N = 60/100 = 0.6$ Gini (A) = $\sum_{i=1}^{n}$ (N_i/N) Gini(k_i) Gini (A) = 0.4 * 0.5 + 0.6 * 0.278 =0.367

Gini (k) = $1 - \sum_{j} (n_j / n | k)^2 \longrightarrow$ Gini (1) = $1 - (20/40)^2 - (20/40)^2 = 0.5$ 2 - 2Gini (2) = 1 - (10/60) - (50/60) = 0.278

Construction of Decision Trees

Overfitting

Overfitting means: DT can classifies the training data with a relative high accuracy rate but not the test data. It means the DC is not able to generalize

Solution: Tree Pruning

- Pre-pruning
- Post-pruning

 Pre-pruning: Stop growing of the tree in the early stages

Stop Criteria:

- at pure nodes or nodes with high degree of purity
- small number of tuples at a node
- no more improving of accuracy rate by more growing

Construction of Decision Trees

Overfitting

Post-pruning :

- Produce a full grown tree
- Prune this tree in different depths to produce a set of pruned trees
- Select the best one using a "validation" data set

Weakness and Strength of Decision Trees

- Strength
 - Produce understandable classification rules with reasonable accuracy rates
 - Decision trees can be constructed relatively fast
 - Decision trees indicate clearly which attributes are most important for classification

Weakness

- By using of decision trees only descriptive analysis of data is possible
- Discretization of continuous-valued is necessary
- They are not appropriate for time series analysis and prediction

Short Review

Part Four: Decision Trees

- Introduction
- Example: Credit Rating
- Example: Computer buyers
- Attribute selection measure in Decision Trees
- Construction of Decision Trees
- Gain Ratio
- Gini Index
- Overfitting
- Pruning

