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Naïve Bayes
IntroductionIntroduction

• In classification tasks, assigning the class value to an observation is
often stochastic and not deterministic

Reasons:
• Noisy data
• Some of the relevant 

attributes are not considered that are stochastic

Example:

income            car              gender            class

2000 yes                    F                          good
2000 yes                    F                            bad

• In classification tasks, assigning the class value to an observation is
often stochastic and not deterministic

Reasons:
• Noisy data
• Some of the relevant 

attributes are not considered that are stochastic

Example:

income            car              gender            class

2000 yes                    F                          good
2000 yes                    F                            bad

To handle such situations, one 
needs stochastic approaches

To handle such situations, one 
needs stochastic approaches

• Naïve Bayes
• Logistic Regression
• …..
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Naïve Bayes
Bayes-TheoremBayes-Theorem

X and Y : Random variables

P (X,Y)  : joint probability of X and Y

P(XIY)   : Conditional probability of X given Y

X and Y : Random variables

P (X,Y)  : joint probability of X and Y

P(XIY)   : Conditional probability of X given Y

Then: P(X,Y) = P(YIX) . P(X) = P(XIY) . P(Y)

P(XIY) . P (Y)
P (YIX) = ------------------------- (1)

P (X)

Relation (1) is known as Bayes-Theorem

Then: P(X,Y) = P(YIX) . P(X) = P(XIY) . P(Y)

P(XIY) . P (Y)
P (YIX) = ------------------------- (1)

P (X)

Relation (1) is known as Bayes-Theorem
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Naïve Bayes
Application of Bayes-Theorem in classificationApplication of Bayes-Theorem in classification

X : Attributes Vector,   Y: Class Vector

X and Y : Random variables

P (YIX) :  Posterior probability, P(Y) : Prior probability

X : Attributes Vector,   Y: Class Vector

X and Y : Random variables

P (YIX) :  Posterior probability, P(Y) : Prior probability

Bayesian Classification Task Bayesian Classification Task 
• Building the Classifier:  

Learning P(YIX) by using data on X and Y

• Classification of new tuples: 
To each new tuple X´ assign the class
value that maximizes p (Y´IX)

• Building the Classifier:  
Learning P(YIX) by using data on X and Y

• Classification of new tuples: 
To each new tuple X´ assign the class
value that maximizes p (Y´IX)
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Naïve Bayes
Application of Bayes-Theorem in classificationApplication of Bayes-Theorem in classification

How can we compute P (YIX) ?

By using the Bayes-Theorem
P(XIY) . P (Y)

P (YIX) = -------------------------
P (X)

• P(x) is independent of Y and can be ignored

• Computing of P(Y) can be done easily by using the observations on Y

• To compute P (XIY)  there are different alternative:

Naïve Bayes is one of them

• P(x) is independent of Y and can be ignored

• Computing of P(Y) can be done easily by using the observations on Y

• To compute P (XIY)  there are different alternative:

Naïve Bayes is one of them
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Naïve Bayes
Naïve Bayes ClassifierNaïve Bayes Classifier

Instead of computing the joint conditional 
probability of X, it is just necessary to compute 
the probability of each Xi given Y

Instead of computing the joint conditional 
probability of X, it is just necessary to compute 
the probability of each Xi given Y

• Goal: Estimating the class conditional probability 

• (Naïve ) Assumption: given the class label Y the
attributes are conditionally independent 

P(XIY=y) =      P (Xi IY=y),    X = (X1,X2,…Xm)     (2)

• Goal: Estimating the class conditional probability 

• (Naïve ) Assumption: given the class label Y the
attributes are conditionally independent 

P(XIY=y) =      P (Xi IY=y),    X = (X1,X2,…Xm)     (2)∏
i=1

m

Thus, from (1) and (2) we have 

P (Y) .        P(Xi I Y)
(3)

∏
i=1

m

P (X)
P (YIX) =

Naïve Bayes Classification Rule:
Assign to the new Vector X´ the class 
that maximizes the numerator of (3) 

Naïve Bayes Classification Rule:
Assign to the new Vector X´ the class 
that maximizes the numerator of (3) 



9

©2007 Gholamreza Nakhaeizadeh.  All rights reserved

Naïve Bayes
Naïve Bayes ClassifierNaïve Bayes Classifier

P (Y) .        P(Xi I Y)∏
i=1

m

P (X)
P (YIX) = = 1/P (X)α constant

P (Y) .        P(Xi I Y)          (4)∏
i=1

m

P (YIX) = α
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Naïve Bayes
ExampleExample

Tid Refund Marital 
Status 

Taxable 
Income Evade

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

c c c
Source: http://www-users.itlabs.umn.edu/classes/Spring-2006/csci5523/index.php?page=lecture%20slides

New Record X’: 
(Refund= no, 
marital status=married, 
taxable income = $ 120 K)

New Record X’: 
(Refund= no, 
marital status=married, 
taxable income = $ 120 K)

Based on the training data, we compute 

P (yes I X’)  and P( no I X’) 

The new record is classifies as “yes” if 

P (yes I X’) > P( no I X’) 

Otherwise it is classified as “no”

Based on the training data, we compute 

P (yes I X’)  and P( no I X’) 

The new record is classifies as “yes” if 

P (yes I X’) > P( no I X’) 

Otherwise it is classified as “no”

Y = Evade
X= (Refund, Marital Status, Taxable Income)

Y = Evade
X= (Refund, Marital Status, Taxable Income)
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Naïve Bayes
Estimation conditional probabilities P (XIY) Estimation conditional probabilities P (XIY) 

A. Attribute is nominalA. Attribute is nominal

1. Choose a value of Y
2. Determine the values of the nominal attribute 

X that corresponds to this selected value of Y
3.   Determine the fraction of these values  

1. Choose a value of Y
2. Determine the values of the nominal attribute 

X that corresponds to this selected value of Y
3.   Determine the fraction of these values  

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

c c c

Example:

1. We choose Y= Evade = No

Example:

1. We choose Y= Evade = No

2. The values of the attribute “Refund”
that corresponds to Evade=no are:

Refund Evade
----------------------------
Yes No
No No
No No
Yes No
No No
Yes               No
No                 No

Refund Evade
----------------------------
Yes No
No No
No No
Yes No
No No
Yes               No
No                 No

3. Determining of the fractions

P (X =  Yes I Y= No ) = 3/7

P (X =  No I Y = No)  = 4/7     

3. Determining of the fractions

P (X =  Yes I Y= No ) = 3/7

P (X =  No I Y = No)  = 4/7     



12

©2007 Gholamreza Nakhaeizadeh.  All rights reserved

Naïve Bayes
Estimation conditional probabilities P (XIY) Estimation conditional probabilities P (XIY) 

B. Attribute is continuous-valued B. Attribute is continuous-valued 
Alternative 1: 
Discretization of the continuous-valued 
Attribute. The rest of the procedure is 
similar to the case A

Alternative 1: 
Discretization of the continuous-valued 
Attribute. The rest of the procedure is 
similar to the case A

Alternative 2:
Assume a certain conditional distribution for the 
cotinuous-valued attribute( e.g. normal distribution) 
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The distributions parameters can be estimated 
by using the observations on X and Y
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Naïve Bayes
Estimation conditional probabilities P (XIY) Estimation conditional probabilities P (XIY) 

B. Attribute is continuous-valued B. Attribute is continuous-valued T id  R e fu n d  M a r ita l 
S ta tu s  

T a x a b le  
In c o m e  E v a d e

1  Y e s  S in g le  1 2 5 K  N o  

2  N o  M a r r ie d  1 0 0 K  N o  

3  N o  S in g le  7 0 K  N o  

4  Y e s  M a r r ie d  1 2 0 K  N o  

5  N o  D iv o rc e d  9 5 K  Y e s  

6  N o  M a r r ie d  6 0 K  N o  

7  Y e s  D iv o rc e d  2 2 0 K  N o  

8  N o  S in g le  8 5 K  Y e s  

9  N o  M a r r ie d  7 5 K  N o  

1 0  N o  S in g le  9 0 K  Y e s  
10  

 

c c c

Example: Example: 
Taxable       Evade
Income
----------------------------
125 No
100 No

70 No
120 No

60 No
220                No

75                No

Taxable       Evade
Income
----------------------------
125 No
100 No

70 No
120 No

60 No
220                No

75                No

X = (125 +100 +70 +… +75) / 7 = 110

S =                        ( Xi – X ) 
2 2∑

i=1

n1
n-1

S =   17850 / 6   =  2975
2

= 54.542975S=

2
) (

2

1)|(

iX

i
eXP

2.  2975

110 

π

−
−

=Y= No

.  54.54

Xi = 120 P ( Xi I  Y= No ) = 0.0072

Source: http://www-users.itlabs.umn.edu/classes/Spring-2006/csci5523/index.php?page=lecture%20slides
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Naïve Bayes
Example:Example:

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

c c c

Determine the class of a new Record X:  
(Refund= no, marital status=married, taxable income = $ 120 K)

Determine the class of a new Record X:  
(Refund= no, marital status=married, taxable income = $ 120 K)

P (XI Y=No) = 
P (Refund=No I Y=No). P( status=married I Y=No). P (T. Income = 120 IY=No)  

P (XI Y=No) = 
P (Refund=No I Y=No). P( status=married I Y=No). P (T. Income = 120 IY=No)  

P ( Y= No) = 7/10   P ( Y = Yes ) = 3/10 P ( Y= No) = 7/10   P ( Y = Yes ) = 3/10 

Refund Evade
----------------------------
Yes No
No No
No No
Yes No
No No
Yes               No
No                 No

Refund Evade
----------------------------
Yes No
No No
No No
Yes No
No No
Yes               No
No                 No

P (Status = married I Y= No ) = 4/7M. status Evade
----------------------------
single No
married        No
single No
married        No
married No
divorced       No
married         No

M. status Evade
----------------------------
single No
married        No
single No
married        No
married No
divorced       No
married         No

P (Refund = No I Y= No ) = 4/7

P (X I Y=No) =  4/7 . 4/7 . 0.0072 = 0.0024   P (X I Y=No) =  4/7 . 4/7 . 0.0072 = 0.0024   

αFrom (4) we have:  P (No I X ) =        P ( Y= No) . P ( X I Y= No )  = 7/10  . 0.0024    =  0.0016    αα

Using the same method  P (Yes I X) = 0 P (No I X) > P (Yes I X )  

The class value of the new record is computed as NoThe class value of the new record is computed as No

P ( T. Income = 120  I  Y= No ) = 0.0072P ( T. Income = 120  I  Y= No ) = 0.0072
(see the last slide)
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Naïve Bayes
Strength and WeaknessStrength and Weakness

• Robust to noise and irrelevant attributes

• Independence assumption may not hold for some attributes

• Robust to noise and irrelevant attributes

• Independence assumption may not hold for some attributes
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