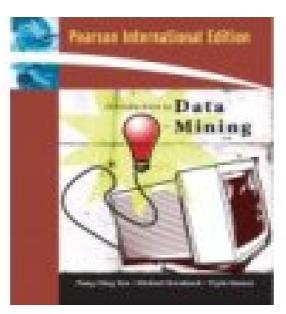
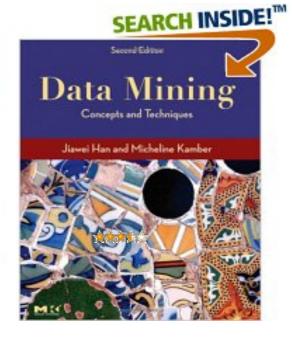


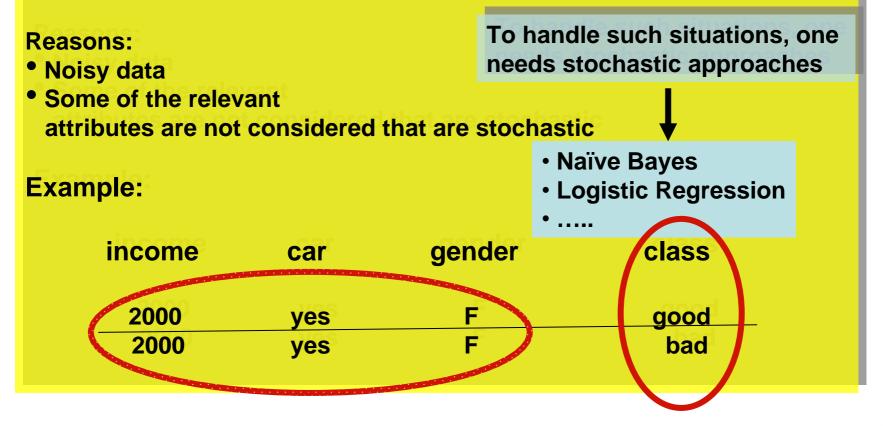
Professor Dr. Gholamreza Nakhaeizadeh


Content

- Literature used
- Introduction
- Bayes Theorem
- Application of Bayes-Theorem in classification
- Naïve Bayes


Literatur used

Principles of Data Mining David J. Hand, Heikki Mannila, Padhraic Smyth


Pang-Ning Tan, Michael Steinbach, Vipin Kumar

<u>Jiawei Han</u> and <u>Micheline Kamber</u>

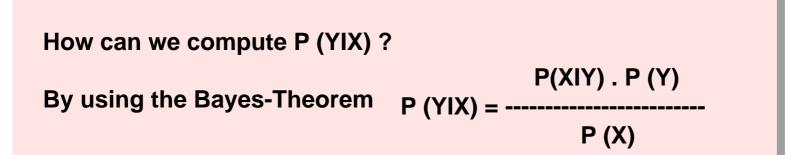
Introduction

Bayes-Theorem

- X and Y : Random variables
- P(X,Y) : joint probability of X and Y
- P(XIY) : Conditional probability of X given Y

Application of Bayes-Theorem in classification

X : Attributes Vector, Y: Class Vector


X and Y : Random variables

P (YIX) : Posterior probability, P(Y) : Prior probability

Bayesian Classification Task

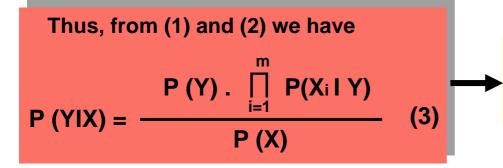
- Building the Classifier: Learning P(YIX) by using data on X and Y
- Classification of new tuples: To each new tuple X[´] assign the class value that maximizes p (Y[´]IX)

Application of Bayes-Theorem in classification

- P(x) is independent of Y and can be ignored
- Computing of P(Y) can be done easily by using the observations on Y
- To compute P (XIY) there are different alternative:

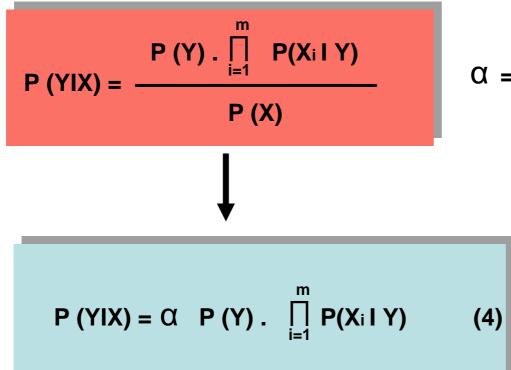
Naïve Bayes is one of them

Naïve Bayes Classifier


m

i=1

- Goal: Estimating the class conditional probability
- (Naïve) Assumption: given the class label Y the attributes are conditionally independent


$$P(XIY=y) = \prod P(XiIY=y), X = (X_1, X_2, ..., X_m)$$
 (2)

Instead of computing the joint conditional probability of X, it is just necessary to compute the probability of each X_i given Y

Naïve Bayes Classification Rule: Assign to the new Vector X´ the class that maximizes the numerator of (3)

Naïve Bayes Classifier

$$\alpha = 1/P(X) \longrightarrow constant$$

Example

Source: http://www-users.itlabs.umn.edu/classes/Spring-2006/csci5523/index.php?page=lecture%20slides

īd	Refund	Marital Status	Taxable Income	Evade	Y = Evade X= (Refund, Marital Status, Taxable Inc
1	Yes	Single	125K	Νο	, , , , , , , , , , , , , , , , , , ,
2	No	Married	100K	No	New Record X':
3	No	Single	70K	No	(Refund= no, marital status=married,
4	Yes	Married	120K	No	taxable income = \$ 120 K)
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	Peeced on the training date we compute
7	Yes	Divorced	220K	No	Based on the training data, we compu-
8	No	Single	85K	Yes	P (yes I X') and P(no I X')
9	No	Married	75K	No	The new record is classifies as "yes" i
10	No	Single	90K	Yes	
		J			P(yes X') > P(no X')

Otherwise it is classified as "no"

Estimation conditional probabilities P (XIY)

A. Attribute is nominal

- 1. Choose a value of Y
- 2. Determine the values of the nominal attribute X that corresponds to this selected value of Y
- 3. Determine the fraction of these values

Example:

```
1. We choose Y= Evade = No
```

2. The values of the attribute "Refund" that corresponds to Evade=no are:

Refund	Evade
Yes	No
No	No
No	No
Yes	No
No	No
Yes	No
No	No

3. Determining of the fraction	ons
P (X = Yes I Y= No) = 3/7	
P (X = No I Y = No) = 4/7	

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Estimation conditional probabilities P (XIY)

B. Attribute is continuous-valued

Alternative 1: Discretization of the continuous-valued Attribute. The rest of the procedure is similar to the case A

Alternative 2: Assume a certain conditional distribution for the cotinuous-valued attribute(e.g. normal distribution)

$$P(X_{i} | Y_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{-\frac{(X_{i} - \mu_{ij})}{2\sigma_{ij}^{2}}}$$

The distributions parameters can be estimated by using the observations on X and Y

Estimation conditional probabilities P (XIY)

B. Attribute	<mark>is continu</mark>	ious-val	ued	Tid	Refund	Marital Status	Taxable Income	Evade
Example:	Taxable	Evade		1	Yes	Single	125K	No
	Income			2	No	Married	100K	No
	125	No		3	No	Single	70K	No
	100	No		4	Yes	Married	120K	No
	70	No		5	No	Divorced	95K	Yes
	120 60	No No		6	No	Married	60K	No
	220	No		7	Yes	Divorced	220K	No
	75	No		8	No	Single	85K	Yes
-				9	No	Married	75K	No
X = (125 +100 +70 ·	+ +75) / 7 =	110		10	No	Single	90K	Yes
$S^{2} = \frac{1}{\sum_{i=1}^{n}} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$			$(X_i - 110)^2$					
n-1	∠ (∧ i − i=1	~)	$P(X_{\pm} $ Y= No)=	1		2. 2975	
$S^{2} = 17850 / 6 = 2975$			$P(X_i \mid Y=No$,	$\sqrt{2\pi}$.	54.54		
$S=\sqrt{2975}=$	54.54		Xi = 120			Xil Y= N	o) = 0.00)72

Source: http://www-users.itlabs.umn.edu/classes/Spring-2006/csci5523/index.php?page=lecture%20slides

Tid Defund Marital Ta

Naïve Bayes

Example:

			Tid	Refund	Marital	Taxable		
Determine	the class of	of a new Record X:			Status	Income	Evade	
(Refund= no, marital status=married, taxable income = \$ 120 K)					Single	125K	No	
P (Y= No) = 7/10 P (Y = Yes) = 3/10				No	Married	100K	No	
(1 = 110)	- 1/10 1 (3	No	Single	70K	No	
P (XI Y=No			4	Yes	Married	120K	No	
P (Refund=	=No I Y=No). P(status=married I Y=No). P (T. Income = 120 IY=No)	5	No	Divorced	95K	Yes	
Refund	Evade		6	No	Married	60K	No	
Refund		P (Refund = No I Y= No) = 4/7	7	Yes	Divorced	220K	No	
Yes	No		8	No	Single	85K	Yes	
No No	No No		9	No	Married	75K	No	
Yes	No	P (T. Income = 120 Y= No) = 0.0072	10	No	Single	90K	Yes	
No	No	(see the last slide)						
Yes	No							
No	No							
M. status	Evade	P (Status = married I Y= No) = 4/7						
single	No							
married	No	P (X I Y=No) = 4/7 . 4/7 . 0.0072 = 0.0024						
single	No	From (4) we have: $P(NoIX) = \alpha P(Y=No) \cdot P(XIY=No)$	_ 7/	40 00	024 a-	0.0016	a	
married married	No No	$F(M) = \alpha F(T = M) F(XT = M)$	= //	10 . 0.0	JU24 U=	0.0010	u	
divorced	No	Using the same method \rightarrow P (Yes I X) = 0 \rightarrow P (No I X) > P (Yes	s I X)				
married	No							
		The class value of the new record is co	mp	uted a	as no			

Strength and Weakness

Robust to noise and irrelevant attributes

Independence assumption may not hold for some attributes