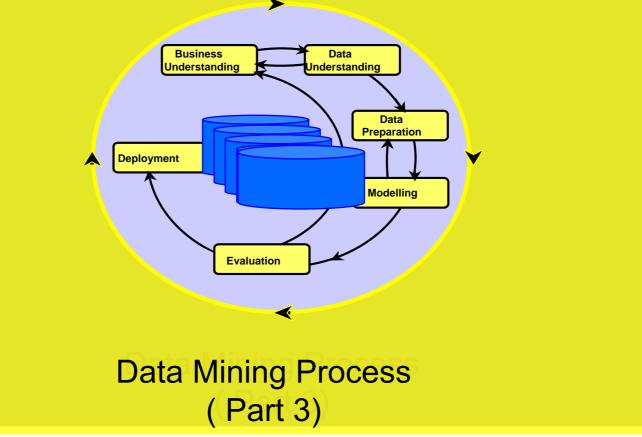
Statistic Methods in Data Mining



Professor Dr. Gholamreza Nakhaeizadeh

Short review of the last lecture

Data Pre-Processing

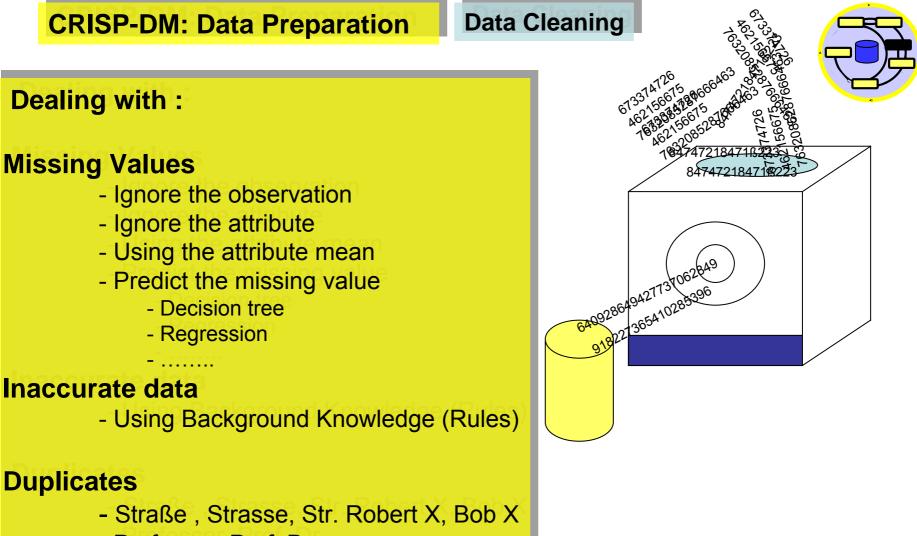
Observation and attribute reduction

Sampling

- Representative sample
- Random sampling
- Sampling with and without replacement
- Systematic sampling
- Stratified sampling

Attribute reduction

- Supervised and unsupervised leaning
- Why attribute reduction ? What are the benefits ?
- Curse of dimensionality
- Attribute Reduction: Generating new attributes, selection of attributes subsets
- First elementary steps: Consideration of background knowledge, screening
- Attribute ranking according to importance
- supervised and unsupervised ranking
- Embedded approaches, Wrapper
- PCA

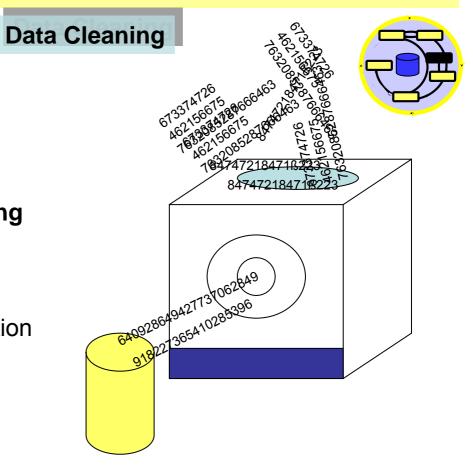


- Professor, Prof. Dr.

CRISP-DM: Data Preparation

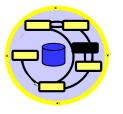
Dealing with Outliers

- Outlier as noise
- Outlier detection as interesting finding
- Outliers Analysis Methods
 - Model-based outlier detection
 - Using distance measures
 - Density-Based local Outlier Detection



CRISP-DM: Data Preparation

Data Transformation



Adding new attributes

According to new facts or background knowledge

• Creation of new attributes using available attributes

Surface area instead of length and width

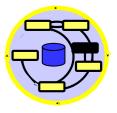
Aggregation and Generalization of attribute values

- Monthly sales instead of daily sales
- City instead of streets

CRISP-DM: Data Preparation

Data Transformation

Example: monthly sales instead daily sales

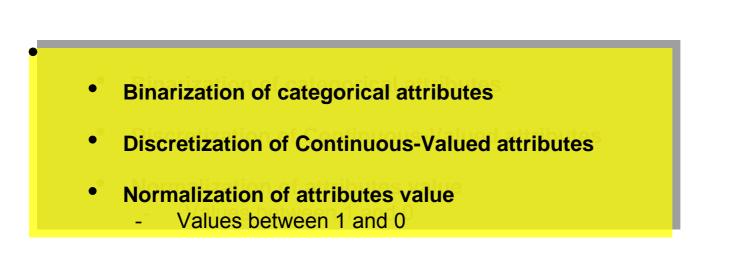


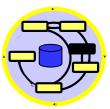
	Day1	 Day30		Month1
Company 1	S 11	 S 130	Company 1	M 1
Company 2	S 21	 S230	Company 2	M2
Company n	Sn1	 S230	Company n	Mn

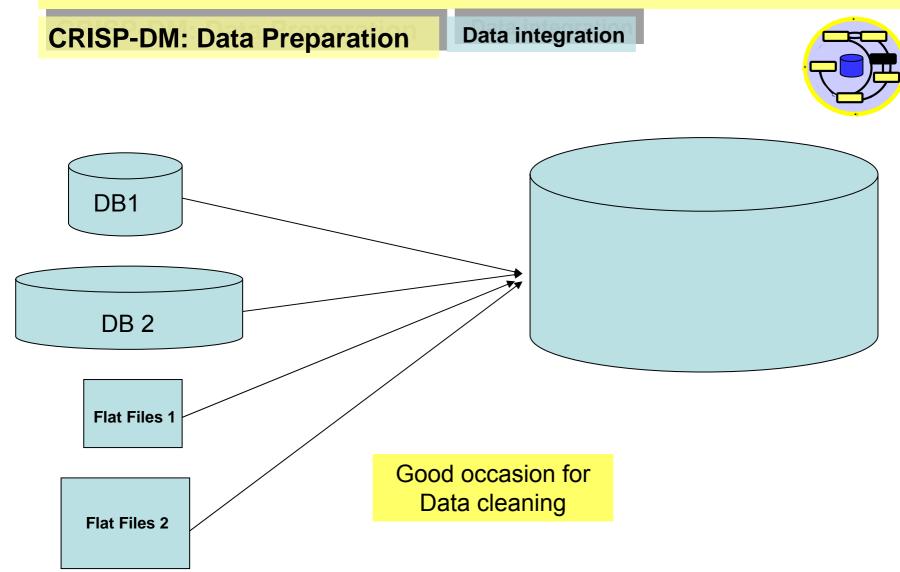
$$M_i = \sum_{j=1}^{30} S_{ij}$$

CRISP-DM: Data Preparation

Data Transformation







CRISP-DM: Modeling

1. Task Identification

- Classification
- Prediction
- Clustering
- ..

2. Determining the DM-algorithms

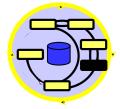
- Decision Trees
- Neural Networks
- Association Rules
- · ..
- 3. Choosing the evaluation function and evaluation method
 - Sum squared Errors
 - Accuracy rates
 - Loss function
 - Cross-Validation
 -

- 4. Choosing the search (optimization) method
 - Analytical methods
 - Greedy search
 - Gradient descent
 - •
- 5. Choosing the data management method
 - Not always necessary

Data Mining Process Task Identification CRISP-DM: Modeling **Clustering Classification Credit Scoring** Good customer Bad customer **Deviation detection Concept Description Customers Loyalty :** Age Income Education •.... **Prediction Dependency Analysis** A and B 10 **Sequence Pattern**

CRISP-DM: Modeling

Task Identification Classification



Examples:

Credit Scoring

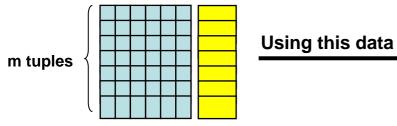
- Quality Management
- Bad customer
- Good customer device defect
 - device not defect
 - perhaps defect

Marketing

- Customer buys successful
- Customer doesn't unsuccessful buv

Univ. entrance exam

Suppose that a tuple X is represented by n Attributes A1, A2,..., An and is assigned to another predefined attribute called target variable or class label attribute. For m tuples we will have a matrix representation like:



Goal: Build a classifier that can predict the class label of a new tuple only by using its attribute values

CRISP-DM: Modeling

Task Identification

Classification

Simple fictive example; Credit Rating in a Bank

	Income >2000	Car	Gender	Credit Rating	
Customer 1	no	yes	F	bad	
Customer 2	no statement	no	F	bad	
					m tuples
Customer 3	no statement	yes	M	good	
Customer 4	no	yes	М	bad	
Customer 5	yes	yes	М	good	In clas
Customer 6	yes	yes	F	good	class la
Customer 7	no statement	yes	F	good	is a no
Customer 8	yes	no	F	good	4
Customer 9	no statement	no	М	bad	
Customer 10	no	no	F	bad	

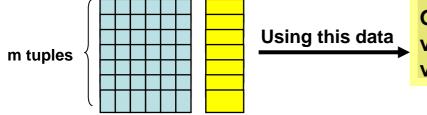
A1, A2,...An class label

۰				

In classification, the class label (target variable) is a nominal variable

Data Mir	ning Process		
CRISP-DN	I: Modeling Tas	k Identification	
Examples:			
Monthly Sales	Hourly Exchange Rate	Average Daily Temperature	
2000	1.3918	23.4	
2560	1.3917	25.6	
1947	1.3914	24.6	
		and the second secon	

Suppose that a tuple X is represented by n Attributes A1, A2,..., An and is assigned to another predefined attribute called target attribute. For m tuples we will have a matrix representation like:



Goal: Build a Predictor that can predict the target value of a new tuple only by using its attribute values

CRISP-DM: Modeling

Task Identification

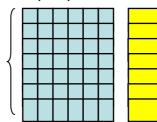
m tuples

Prediction

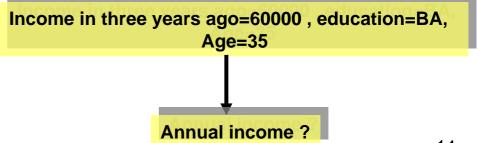
Simple fictive example; Prediction of annual income

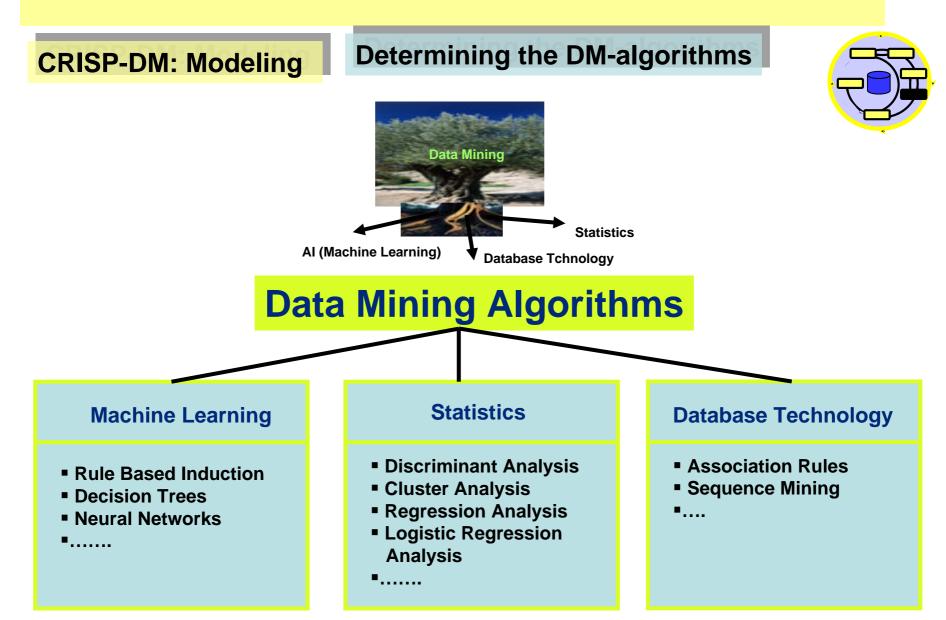
ID	Income in three years ago	Education	Age	Income
1A	24552	High School	32	27026
2A	88282	BSc	52	93725
3B	82902	PhD	41	82356
4A	39838	High School	56	36828
5C	53542	PhD	32	62542
6M	63826	MS	28	64882
7D	82783	MA	43	89025
8A	72886	High School	33	74925
9Q	21383	BA	37	62572
1R	63552	BA	41	66427
1T	62522	High School	25	63552
1E	65254	PhD	56	67252

A1, A2,...An Target attribute



In prediction, the target variable is a continuous-valued variable





CRISP-DM: Modeling

Choosing evaluation function and evaluation method



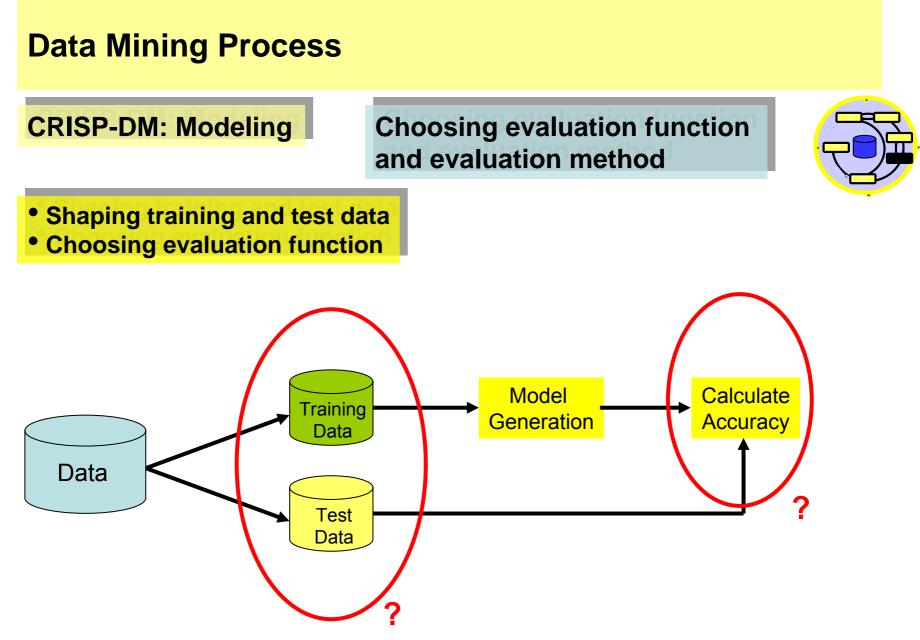
General remarks

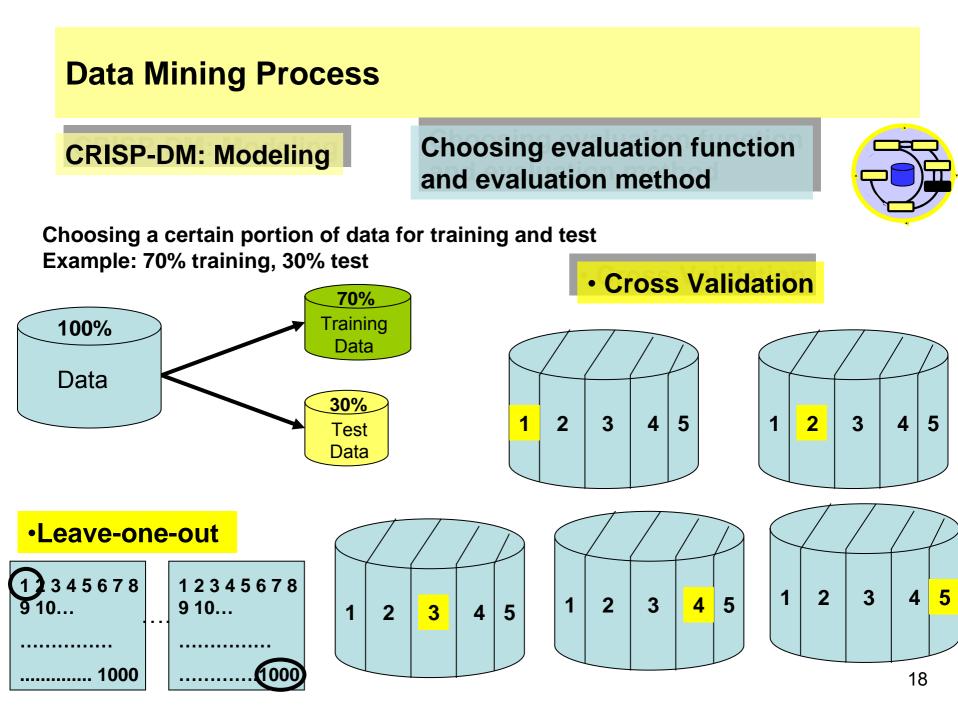
- Results produced by the model are normally worse than the real facts Reasons:
 - Error in data
 - Model Misspecification
 - Structural Change

•

To evaluate the results produced by the model we need :

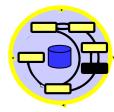
- Evaluation methods
- Evaluation functions



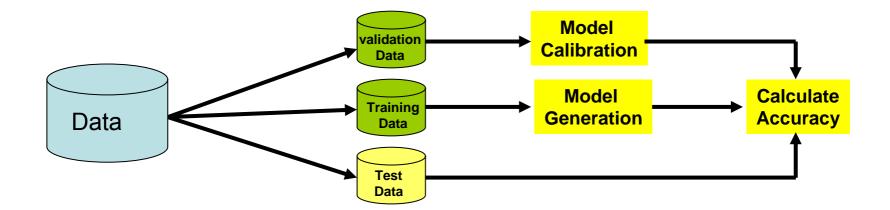


CRISP-DM: Modeling

Choosing evaluation function and evaluation method

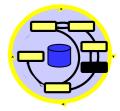


In some cases, besides the training and test datasets, a "validation dataset" is used too



CRISP-DM: Modeling

Choosing evaluation function and evaluation method



Ripley (1996), (p.354)

A set of examples used for learning, that is to fit the parameters [i.e., weights] of the classifier.

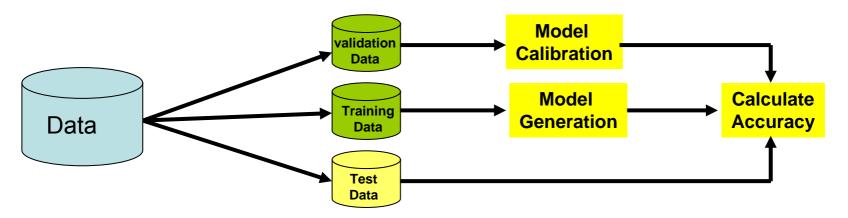
Validation set:

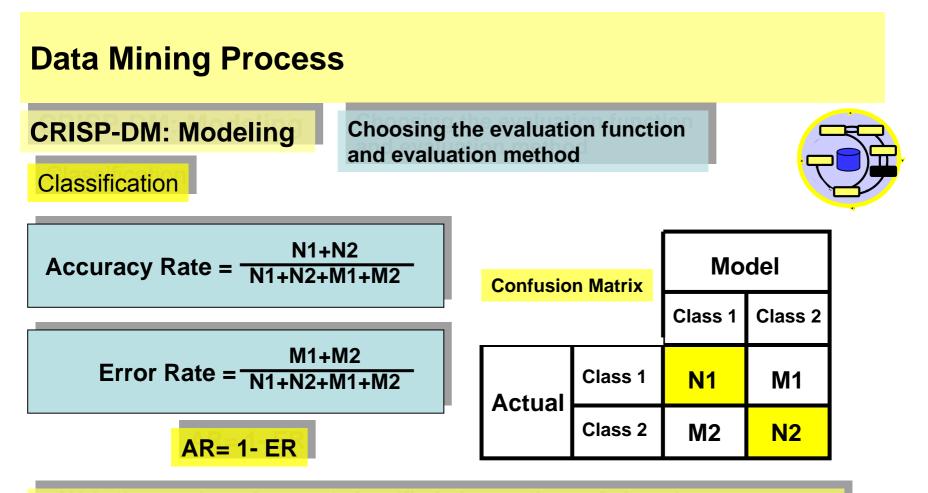
Training set:

A set of examples used to tune the parameters [i.e., architecture, not weights] of a classifier, for example to choose the number of hidden units in a neural network.

Test set:

A set of examples used only to assess the performance [generalization] of a fully-specified classifier.



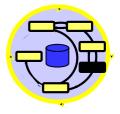


- N1 is the number of correct classified observations of class 1
- N2 is the number of correct classified observations of class 2
- M1 is the number of incorrect classified observations (from class1 to class2)
- M2 is the number of incorrect classified observation (from class2 to class1)

CRISP-DM: Modeling

Choosing the evaluation function and evaluation method

Classification



Example

	Income >2000	Car	Gender	Credit	Rating
				Actual	predicted
Customer 1	no	yes	F	bad	bad
Customer 2	no statement	no	F	bad	bad
Customer 3	no statement	yes	M	good	bad
Customer 4	no	yes	M	bad	bad
Customer 5	yes	yes	M	good	bad
Customer 6	yes	yes	F	good	good
Customer 7	no statement	yes	F	good	good
Customer 8	yes	no	F	good	bad
Customer 9	no statement	no	M	bad	good
Customer 10	no	no	F	bad	bad

Confusion Matrix

		Model		
		good	bad	
	good	2	3	
Actual	bad	1	4	

Accuracy Rate = 6/10 = 60% Error Rate= 40%

Data Mining Process										
CRISP-DM: Modeling					Choosing the evaluation function and evaluation method					
Classification										
					= positiv = negati					
	Confusion Matrix			del						
	Comucilo		Class 1	Class 2						l
		Class 1	N1	M1	Confusion Matrix Model			del		
	Actual	Class 2	M2	N2				Class 1 positive	Class 2 negative	
						Actual	Class 1 positive	true positive	false negative	
						Actual	Class 2 negative	false positive	true negative	

Data Mining Process Choosing the evaluation function **CRISP-DM:** Modeling and evaluation method Prediction n MSE=1/n ∑(Yi-Yʻi)² n MAE=1/n ∑|Yi-Yʻi| i=1 i=1 n n \sum (Yi-Y'i) Σ |Yi-Y'i| $RAE = \frac{i=1}{n}$ i=1 RSE = n Σ |Yi-Y| Σ (Yi-Y) i=1 i=1

MAE = Mean Absolute Error RAE = Relative Absolute Error n= Number of observations in test data Y= Actual value, Y'= Predicted value, MSE = Mean Squared Error RSE = Relative Squared Error

Y = mean of Ys

CRISP-DM: Evaluation

http://www.crisp-dm.org/CRISPwP-0800.pdf

Evaluate results

Review process

Determine next steps

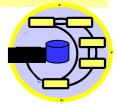
CRISP-DM: Deployment

Plan deployment

 Plan monitoring and maintenance

Produce final report

Review project



http://www.crisp-dm.org/CRISPwP-0800.pdf

Another Example: SAS data Mining Process SEMMA

Sample the data by creating one or more data tables. The sample should be large enough to contain the significant information, yet small enough to process

E*xplore* the data by searching for anticipated relationships, unanticipated trends, and anomalies in order to gain understanding and ideas

Modify the data by creating, selecting, and transforming the variables to focus the model selection process

Model the data by using the analytical tools to search for a combination of the data that reliably predicts a desired outcome

Assess the data by evaluating the usefulness and reliability of the findings from the data mining process

Data Mining Algorithms

