

Professor Dr. Gholamreza Nakhaeizadeh

Content

Regression Analysis (Part 1)

- Literature used
- Regression analysis
- introduction
- Simple linear regression
- Stochastic aspects in Simple linear regression
- Multivariate linear regression
- Matrix representation
- OLS-Estimators in Simple linear regression
- Overall fit of the estimated regression
- Coefficient of Determination
- Simple Correlation Coefficient

Literatur used (1)

Pang-Ning Tan, Michael Steinbach, Vipin Kumar

Jiawei Han and Micheline Kamber

Schneeweiss: *Ökonometrie.* 1990 Physica-Verlag

Principles of Data Mining

David J. Hand, <u>Heikki Mannila</u>, <u>Padhraic Smyth</u>

Literature Used (2)

http://www2.chass.ncsu.edu/garson/PA765/regress.htm http://www.statsoft.com/textbook/stmulreg.html http://www.statsoft.com/textbook/glosfra.html?glosm.html&1

Introduction

- Tools for prediction and causal analysis based on Supervised Learning
- Regression function, y = f (X), maps a set of attributes X known also as exogenous, independent or explanatory variables

into an output **y** known also as **endogenous dependent**, **response**, **or target variable** by learning from the tuples observed for X and y

Introduction

- The aim is to use the input data to perform the best estimation for y with minimum error
- Time Series and Cross-Section aspects regarding prediction
- Endogenous variable must be continuous-valued but the exogenous variables can be nominal or continuous
- Estimation of parameters and their Significant tests are based on statistical methods

Regression and Artificial Neural Networks

Regression Analysis Introduction

```
Estimation Method
```

Error Function: Sum of squared errors

∑[y-f(X_i)]

 Estimation on the training data, assessment on the test data or validation data

 In Stepwise regression backward and forward possible (like pruning in DT)

Regression and Artificial Neural Networks

Regression Analysis Introduction

Examples of applications

- Prediction of the family consumption using other indicators like, income, price, family size, living place
- Prediction of stock market index by applying other economic indicators
- Prediction of the air temperature based on other atmospheric factors

Trend Prediction

The stochastic Error Term

$$Y = \beta_0 + \beta_1 X + \varepsilon \longrightarrow \text{Stochastic error term}$$
(2)

deterministic component

Stochastic error term must be preset, because

- All relevant explanatory variables are not considered
- Measurement error
- Misspecification of functional form

....

$$\mathsf{E}(\mathfrak{E}|\mathsf{X})=\mathbf{0}$$
 (3)

 $E(Y | X) = B_0 + B_1 X$ (4)

Consideration of the observations

 $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ (i = 1, 2, 3,...., n) n: Number of observations

- Yi : the ith observation of the dependent variable
- Xi : the ith observation of the independent variable
- ε i : the ith observation of the stochastic error term

 $Y_{1} = \beta_{0} + \beta_{1} X_{1} + \varepsilon_{1}$ $Y_{2} = \beta_{0} + \beta_{1} X_{2} + \varepsilon_{2}$ $Y_{n} = \beta_{0} + \beta_{1} X_{n} + \varepsilon_{n}$

The coefficients ß0 and ß1 do not change from observation to observation

General Case: Multivariate Regression Equation

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + \dots + \beta_{m} X_{mi} + \varepsilon_{i}$$
 (5)

One unit increase in the independent variable X_k Change in the dependent variable Y is equal to ß_k, holding constant the other independent variables

Regression and Artificial Neural Networks

Regression Analysis Multivariate Linear Regression

 $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_m X_{mi}$

Ordinary Least Square

In the regression equation $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$

The parameters B₀ and B₁ are unknown they can be estimated by using the observations of Y and X

```
ßo and ß1 : Estimates of ßo and ß1
```

```
and \hat{e}_i = Y_i - \hat{Y}_i : residual
```

```
∧
Yi : Estimate of Yi
```

OLS: Determine $\hat{\mathbf{B}}_{0}$ and $\hat{\mathbf{B}}_{1}$ so that is minimized

$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}$$

OLS is relatively easy and OLS – estimates have useful characteristics

OLS-estimates for single-equation linear model

$$\hat{B}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X}) (Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}, \quad \hat{B}_{0} = \bar{Y} - B_{1} \bar{X} \quad (6)$$

with

$$\overline{\mathbf{X}} = 1/n \sum_{i=1}^{n} \mathbf{X}_{i}$$
$$\overline{\mathbf{Y}} = 1/n \sum_{i=1}^{n} \mathbf{Y}_{i}$$

18

Overall fit of the estimated regression Decomposition of Variance

Overall fit of the estimated regression

Coefficient of Determination

TSS = ESS + RSS

$$R^{2} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}}{\sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}} \quad (8)$$

From (7) and (8)
$$0 \le R^2 \le 1$$
 (9)

Overall fit of the estimated regression

Two extreme cases

Overall fit of the estimated regression

Coefficient of Determination

very good fit

Overall fit of the estimated regression Adjusted Coefficient of Determination

2 **R** is biased to the number of independent variables

More independent variables

higher R

Solution: Adjusted R²

$$\overline{R}^{2} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - Y_{i})^{2} / (n - k - 1)}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} / (n - 1)}$$

• Normally, R is used to compare the goodness of fit of regression equations with different numbers of independent variables

-2 • R is not a percent but an index

2

k : Number of independent variables

Overall fit of the estimated regression Simple Correlation Coefficient

$$\Gamma_{X,Y} = \frac{\sum \left[\left(X_{i} - \overline{X} \right) \left(Y_{i} - \overline{Y} \right) \right]}{\sqrt{\sum \left(X_{i} - \overline{X} \right)^{2} \sum \left(Y_{i} - \overline{Y} \right)^{2}}}$$
(10)

 $-1 \leq r \leq +1$

X and Y are perfectly positively correlated, then r = +1 X and Y are perfectly negatively correlated, then r = -1X and Y are totally uncorrelated, then r = 0

Model assumptions

Regression Analysis

Simple linear regression model

 $Y_i = R_0 + R_1 X_i + \varepsilon_i$ for i = 1, 2,... n

Assumption 1: $E(\varepsilon_i | x) = 0$

for i = 1, 2,.... n

Simple linear regression model

Assumption 4:

Sample-Var(x) =
$$S^{2}(x) = 1/n \sum_{i=1}^{n} (x_{i} - x_{i})^{2} > 0$$

und

 $\lim_{n \to \infty} \overline{X^2} < \infty$

$$\overline{X^2} = 1/n \sum_{i=1}^{n} X_i^2$$

Model assumptions

Aussumption 5: The explanatory variables must be linearly independent

no collinearity or multicollinearity

und

$$\lim_{n \to \infty} \sum_{n=1}^{2} (X) > 0$$

Under these 5 assumptions the OLS-Estimators are **Best Linear Unbiased Esimator (BLUE).** It means that they are the efficient ones amongst the set of unbiased linear estimators

Assumption 6: (not always necessary) For given x the error term ε is normally distributed