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Regression Analysis
IntroductionIntroduction

• Tools for prediction and causal analysis
based on Supervised Learning

• Regression function, y = f (X), maps a set of 
attributes X known also as 
exogenous, independent  or explanatory variables

into an output y known also as 
endogenous dependent , response, or target variable
by learning from the tuples observed for X and y
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Regression Analysis

• The aim is to use the input data to perform the 
best estimation for y with minimum error

• Time Series and Cross-Section aspects 
regarding prediction

• Endogenous variable must be continuous-valued
but the exogenous variables can be 
nominal or continuous

• Estimation of parameters and their Significant tests 
are based on statistical methods

• The aim is to use the input data to perform the 
best estimation for y with minimum error

• Time Series and Cross-Section aspects 
regarding prediction

• Endogenous variable must be continuous-valued
but the exogenous variables can be 
nominal or continuous

• Estimation of parameters and their Significant tests 
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IntroductionIntroduction
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Regression and Artificial Neural Networks

Regression AnalysisRegression Analysis IntroductionIntroduction

Estimation Method

• Error Function: Sum of  squared errors

• Estimation on the training data, assessment on the 
test data or validation data

• In Stepwise regression backward and forward possible 
(like pruning in DT)

Estimation Method

• Error Function: Sum of  squared errors

• Estimation on the training data, assessment on the 
test data or validation data

• In Stepwise regression backward and forward possible 
(like pruning in DT)

i
i

2

i
∑ [ y - f ( X  ) ]
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Regression and Artificial Neural Networks

Regression AnalysisRegression Analysis IntroductionIntroduction

Examples of applications

• Prediction of the family consumption using other 
indicators like, income, price, family size, living place

• Prediction of stock market index by applying other 
economic indicators

• Prediction of the air temperature based on other 
atmospheric factors 

• Trend Prediction
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Regression Analysis

Single-Equation Linear Models

ß Xß + Y = 0 1
(1)

ßs are the coefficients
ß0 : Constant or intercept
X=0          Y= ß0→

ß1 : slope coefficient

X increases by one unit  Y increases by ß1

ß1 : slope coefficient

X increases by one unit  Y increases by ß1

ß1 =  
△X   

△Y Slope =

Y = ß0 + ß1 X

X1          X2

Y1
Y2

△X   
△Y 

X

Y

Making nonlinear equations linear

Y = ß0 + ß1 X

Z = X                Y = ß0 + ß1 Z

2

2
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Regression Analysis

Stochastic error term must be preset, because
• All relevant explanatory variables are not considered
• Measurement error
• Misspecification of functional form
• …..

Stochastic error term must be preset, because
• All relevant explanatory variables are not considered
• Measurement error
• Misspecification of functional form
• …..

The stochastic Error TermThe stochastic Error Term

єY = ß0 + ß1 X + 

deterministic component

Stochastic error term (2)

E ( Y | X ) = ß0 + ß1 X 

(3)E (   | X ) = 0є

(4)
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Regression Analysis

єYi = ß0 + ß1 Xi + i ( i = 1, 2, 3,……, n )

Yi :      the ith observation of the dependent variable

Xi :      the ith observation of the independent variable

є i :      the ith observation of the stochastic error term

n : Number of observations

єY1 = ß0 + ß1 X1+ 1

єY2 = ß0 + ß1 X2 + 2

єYn = ß0 + ß1 Xn + n

……………………………..
The coefficients ß0 and ß1 do not change from 
observation to observation

Consideration of the observationsConsideration of the observations
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Regression Analysis

General Case: Multivariate Regression Equation

Yi = ß0 + ß1 X1i + ß2 X2i + …. + ßm Xmi + є i (5)

One unit increase in the independent variable  Xk

Change in the  dependent variable Y is equal to ßk, 
holding constant the other independent variables 

Change in the  dependent variable Y is equal to ßk, 
holding constant the other independent variables 
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Regression and Artificial Neural Networks
Regression AnalysisRegression Analysis Multivariate Linear  RegressionMultivariate Linear  Regression

x11 x12 …. x1j ….     x1m Y1

………………………………………
xi1 xi2 ….   xij …… xim Yi

…………………………………………
xn1 xn2 …. xnj ….      xnm Yn

Observations

Y = X ß
Matrix notation

Y = 

Y1

Y2

.

.
Yn

ß = 

ß0

ß1

.

.
ßm

1     x11 x12 ………..  x1m

1     x21 x22 …. …… x2m

… …… ……… ……… …..

1      xn1 xn2 ………… xnm

X =

Yi = ß0 + ß1 X1i + ß2 X2i + …. + ßm Xmi
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Regression Analysis

єYi = ß0 + ß1 Xi + iIn the regression equation 

Ordinary Least SquareOrdinary Least Square

The parameters ß0 and ß1 are unknown
they can be estimated by using the observations of Y and X

ß0 and ß1 : Estimates of ß0 and ß1
˄˄

˄
Yi   :    Estimate of Yi

and

OLS: Determine ß0 and ß1 so that   is minimized
˄ ˄

∑
i = 1

n

OLS is relatively easy and OLS – estimates have useful characteristics OLS is relatively easy and OLS – estimates have useful characteristics 

= Yi – Yi : residual
˄

єi
˄

2 
єi
˄
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X

Yi 

Yi

∑ [ Yi - Yi ]
2

Least Squares MethodLeast Squares Method

˄

˄

i = 1 

n
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Regression Analysis

ß1 = 
˄

( Xi – X ) ( Yi – Y ) 
−−

∑
i= 1

n

( Xi – X )
−

∑
i= 1

n 2
, ß0 = Y – ß1 X 

−−∧
(6)

OLS-estimates for single-equation linear model

X = 1/n ∑
i = 1

n

Xi

_

Y = 1/n ∑
i = 1

n

Yi

_

with
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Regression Analysis

X

Y

Y = ß0 + ß1X 
˄ ˄˄

X

Y
Yi - Yi

˄

Yi - Y

Yi - Y
˄

Decomposition of VarianceDecomposition of VarianceOverall fit of the  estimated regressionOverall fit of the  estimated regression

( Xi, Yi )

( Xi, Yi )
˄

Xi
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Regression Analysis
Decomposition of VarianceDecomposition of Variance

Total Sum of Squares
(TSS)

Explained Sum of Squares
(ESS)

Residual Sum of Squares
(RSS)

Smaller RSS to TSS                                     better the estimated regression fits the data

Overall fit of the  estimated regressionOverall fit of the  estimated regression

( Yi – Y )  =      ( Yi – Y  ) +     ( Yi – Yi )
˄2  ˄ 2  2  

∑∑∑
ii i

( 7 )    

TSS = ESS + RSSTSS = ESS + RSS
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Regression Analysis
Overall fit of the  estimated regressionOverall fit of the  estimated regression Coefficient of DeterminationCoefficient of Determination

R =              =  1 - =   1 -
ESS

TSS

RSS

TSS
( Yi – Y )

2

( Yi – Y )
˄ 2

∑

∑

2
( 8 )    

From ( 7 ) and ( 8 )    0      R      1     ≤ ≤
2 ( 9 )

Value of R close to one       excellent overall fit

Value of R close to zero                  very poor fit

Value of R close to one       excellent overall fit

Value of R close to zero                  very poor fit

2

2

TSS = ESS + RSSTSS = ESS + RSS
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Regression Analysis
Overall fit of the  estimated regressionOverall fit of the  estimated regression Two extreme casesTwo extreme cases

Y

X

Y

Y  =  Y
˄

Estimated Regression :

R   =   0                            see  ( 8 )
2

X and Y are not related

X

Y

R  = 1
2

all the observations are on the 
regression line
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Regression Analysis
Overall fit of the  estimated regressionOverall fit of the  estimated regression

X

Y

R  : very close to one 
2

very good fit  

Coefficient of DeterminationCoefficient of Determination
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Regression Analysis
Overall fit of the  estimated regressionOverall fit of the  estimated regression Adjusted Coefficient of DeterminationAdjusted Coefficient of Determination

R  is biased to the number of independent variables
2

More independent variables                             higher R 
2

Solution:  Adjusted R
2

R  =   1  -

( Yi – Y ) / (n – k - 1 )
2˄∑

( Yi – Y ) / (n – 1)
2

∑

2

k : Number of independent  variables

• Normally, R   is used to compare the 
goodness of fit of  regression equations with
different numbers of independent variables

• R  is not a percent but an index 

2

2
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Regression Analysis
Overall fit of the  estimated regressionOverall fit of the  estimated regression Simple Correlation CoefficientSimple Correlation Coefficient

[ ( Xi – X ) ( Yi – Y ) ]

( Xi – X )        ( Yi – Y ) 
2 2

r X, Y  =

√∑

∑

- 1       r           1  ≤ +≤
X and Y are  perfectly positively  correlated, then r = +1

X and Y are  perfectly negatively  correlated, then r = -1

X and Y are totally uncorrelated, then r = 0

X and Y are  perfectly positively  correlated, then r = +1

X and Y are  perfectly negatively  correlated, then r = -1

X and Y are totally uncorrelated, then r = 0

(10)

∑
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Regression Analysis
Simple linear regression modelSimple linear regression model Model assumptionsModel assumptions

Ϭ

Assumption 2:

V(εi | x) =                           for i = 1, 2,…. n 2

Assumption 3:
E(εi εj | x) = 0                         for i = j                 i , j = 1, 2,…. n 

Assumption 1:
E(εi | x) = 0                         for i = 1, 2,…. n 

єYi = ß0 + ß1 Xi + i for i = 1, 2,…. n

Variance of        is constant є i

for i=1,2,… n
Homoscedasticity

(Heteroscedasticity)

εi and εj are not correlatedεi and εj are not correlated
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Regression Analysis
Simple linear regression modelSimple linear regression model Model assumptionsModel assumptions

Assumption 4:

Sample-Var(x) = S (x) = 1/n                        > 0 
2

∑ ( xi – x )
— 2

i =1

n

und

lim X <                          X = 1/n      X 
n 

und

lim S  (X) > 0 
n  

∞

∞

2 2

2

∞ ∑
i = 1

i

n
2

Assumption 6: (not always necessary)
For given x the error term ε is normally distributed

Assumption 6: (not always necessary)
For given x the error term ε is normally distributed

Aussumption 5:
The explanatory variables must be 
linearly independent

Aussumption 5:
The explanatory variables must be 
linearly independent

Under these  5 assumptions the OLS-Estimators are  
Best Linear Unbiased Esimator (BLUE).
It means that they are the efficient ones amongst the set 
of unbiased linear estimators

Under these  5 assumptions the OLS-Estimators are  
Best Linear Unbiased Esimator (BLUE).
It means that they are the efficient ones amongst the set 
of unbiased linear estimators

no  collinearity or multicollinearityno  collinearity or multicollinearity
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