Statistical Data Mining

Regression Analysis (part 1)

Professor Dr. Gholamreza Nakhaeizadeh

Content

Regression Analysis (Part 1)

- Literature used
- Regression analysis
- introduction
- Simple linear regression
- Stochastic aspects in Simple linear regression
- Multivariate linear regression
- Matrix representation
- OLS-Estimators in Simple linear regression
- Overall fit of the estimated regression
- Coefficient of Determination
- Simple Correlation Coefficient

Literatur used (1)

Principles of Data Mining

David J. Hand, Heikki Mannila, Padhraic Smyth

SEARCH INSIDE! ${ }^{\text {m" }}$

Jiawei Han and
Micheline Kamber

Schneeweiss: Ökonometrie. 1990 Physica-Verlag

Literature Used (2)

http://www2.chass.ncsu.edu/garson/PA765/regress.htm http://www.statsoft.com/textbook/stmulreg.html http://www.statsoft.com/textbook/glosfra.html?glosm.html\&1

Regression Analysis

Regression Analysis

Introduction

- Tools for prediction and causal analysis based on Supervised Learning
- Regression function, $\mathbf{y}=\mathbf{f}(\mathbf{X})$, maps a set of attributes \mathbf{X} known also as exogenous, independent or explanatory variables
into an output y known also as endogenous dependent, response, or target variable by learning from the tuples observed for X and y

Regression Analysis

Introduction

- The aim is to use the input data to perform the best estimation for y with minimum error
- Time Series and Cross-Section aspects regarding prediction
- Endogenous variable must be continuous-valued but the exogenous variables can be nominal or continuous
- Estimation of parameters and their Significant tests are based on statistical methods

Regression and Artificial Neural Networks

Regression Analysis Introduction

Estimation Method

- Error Function: Sum of squared errors

$$
\sum_{i}\left[y_{i}-f\left(X_{i}\right)\right]^{2}
$$

- Estimation on the training data, assessment on the test data or validation data
- In Stepwise regression backward and forward possible (like pruning in DT)

Regression and Artificial Neural Networks

Regression Analysis Introduction

Examples of applications

- Prediction of the family consumption using other indicators like, income, price, family size, living place
- Prediction of stock market index by applying other economic indicators
- Prediction of the air temperature based on other atmospheric factors
- Trend Prediction

Regression Analysis

Single-Equation Linear Models

B1 : slope coefficient
X increases by one unit $\rightarrow Y$ increases by $ß_{1}$

Bs are the coefficients Bo: Constant or intercept $X=0 \rightarrow Y=ß 0$

Making nonlinear equations linear

$$
Y=\beta_{0}+\beta_{1} X^{2}
$$

$$
z=x^{2}
$$

$$
Y=\beta_{0}+\beta_{1} Z
$$

Regression Analysis

The stochastic Error Term

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X+\epsilon \longrightarrow \text { Stochastic error term } \tag{2}
\end{equation*}
$$

deterministic component
Stochastic error term must be preset, because

- All relevant explanatory variables are not considered
- Measurement error
- Misspecification of functional form

$$
\begin{align*}
& E(\epsilon \mid X)=0 \tag{3}\\
& E(Y \mid X)=\beta_{0}+\beta_{1} X \tag{4}
\end{align*}
$$

Regression Analysis

Consideration of the observations
$Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \quad(i=1,2,3, \ldots \ldots, n) \quad n:$ Number of observations
$Y_{i} \quad: \quad$ the $i t h$ observation of the dependent variable
$X_{i} \quad: \quad$ the i th observation of the independent variable
ϵ_{i} : the ith observation of the stochastic error term

$$
\begin{aligned}
& Y_{1}=\beta_{0}+\beta_{1} X_{1}+\epsilon_{1} \\
& Y_{2}=\beta_{0}+\beta_{1} X_{2}+\epsilon_{2}
\end{aligned}
$$

The coefficients B_{0} and B_{1} do not change from observation to observation
$Y_{n}=\beta_{0}+\beta_{1} X_{n}+\epsilon_{n}$

Regression Analysis

General Case: Multivariate Regression Equation

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots .+\beta_{m} X_{m i}+\epsilon i \tag{5}
\end{equation*}
$$

One unit increase in the independent variable X_{k}

Change in the dependent variable Y is equal to β_{k}, holding constant the other independent variables

Regression and Artificial Neural Networks

Regression Analysis Multivariate Linear Regression

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{m} X_{m i}
$$

Observations

$$
\mathbf{X}=\left[\begin{array}{cccccc}
1 & x_{11} & x_{12} & \ldots \ldots \ldots . & x_{1 m} \\
1 & x_{21} & x_{22} & \ldots & \ldots \ldots & x_{2 m} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right] . . .
$$

Matrix notation

$$
Y=X B
$$

Regression Analysis

Ordinary Least Square

In the regression equation

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

The parameters β_{0} and β_{1} are unknown they can be estimated by using the observations of Y and X
$\wedge \quad \wedge$
β_{0} and β_{1} : Estimates of β_{0} and β_{1}
$\hat{\mathbf{Y}}_{i}$: Estimate of \mathbf{Y}_{i}
and
$\hat{\epsilon}_{i}=Y_{i}-\hat{Y}_{i}:$ residual

OLS: Determine $\hat{ß}_{0}$ and $\hat{\beta}_{1}$ so that is minimized $\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}$

OLS is relatively easy and OLS - estimates have useful characteristics

Regression Analysis

OLS-estimates for single-equation linear model

$$
\begin{equation*}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \quad, \quad \hat{B}_{0}=\bar{Y}-B_{1} \bar{X} \tag{6}
\end{equation*}
$$

with

$$
\left.\begin{array}{l}
\bar{X}=1 / n \sum_{i=1}^{n} X_{i} \\
\bar{Y}=1 / n \sum_{i=1}^{n} Y_{i}
\end{array}\right\}
$$

Regression Analysis

Overall fit of the estimated regression Decomposition of Variance

Regression Analysis

Overall fit of the estimated regression Decomposition of Variance

$$
\begin{equation*}
\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i}\left(Y_{i}-\hat{Y}_{i}\right)^{2} \tag{7}
\end{equation*}
$$

 (TSS)

TSS = ESS + RSS

Explained Sum of Squares (ESS)

Smaller RSS to TSS

better the estimated regression fits the data

Regression Analysis

Overall fit of the estimated regression
Coefficient of Determination
TSS = ESS + RSS
$R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S}=1-\frac{\sum\left(Y_{i}-\hat{Y}\right)^{2}}{\sum\left(Y_{i}-\bar{Y}\right)^{2}}$

From (7) and (8) $0 \leq R^{2} \leq 1$

Value of R^{2} close to one \longrightarrow excellent overall fit
Value of R^{2} close to zero \longrightarrow very poor fit

Regression Analysis

Overall fit of the estimated regression

Estimated Regression : $\hat{\mathbf{Y}}=\overrightarrow{\mathbf{Y}}$
$R^{2}=0 \quad$ see (8)
X and Y are not related

Two extreme cases

$R^{2}=1$
all the observations are on the regression line

Regression Analysis

Overall fit of the estimated regression
Coefficient of Determination

Regression Analysis

Overall fit of the estimated regression Adjusted Coefficient of Determination

2
\mathbf{R} is biased to the number of independent variables
More independent variables
 higher \mathbf{R}^{2}

Solution: Adjusted $\mathbf{R}^{\mathbf{2}}$

$$
\bar{R}^{2}=1-\frac{\sum\left(Y_{i}-\hat{Y}\right)^{2} /(n-k-1)}{\sum\left(Y_{i}-\bar{Y}\right)^{2} /(n-1)}
$$

- Normally, \mathbf{R}^{-2} is used to compare the goodness of fit of regression equations with different numbers of independent variables
- $\frac{-2}{R}$ is not a percent but an index
k: Number of independent variables

Regression Analysis

Overall fit of the estimated regression Simple Correlation Coefficient

$$
r_{X, Y}=\frac{\sum\left[\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)\right]}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2} \sum\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

$$
-1 \leq r \leq+1
$$

X and Y are perfectly positively correlated, then $r=+1$
X and Y are perfectly negatively correlated, then $r=-1$
X and Y are totally uncorrelated, then $r=0$

Regression Analysis

Simple linear regression model

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \quad \text { for } i=1,2, \ldots n \tag{ר}
\end{equation*}
$$

Assumption 1: $E\left(\varepsilon_{i} \mid x\right)=0 \quad$ for $i=1,2, \ldots . n$

Assumption 2:
$V\left(\varepsilon_{i} \mid x\right)=\sigma^{2}$
for $i=1,2, \ldots n$

Variance of ϵ_{i} is constant for $i=1,2, \ldots n$
Homoscedasticity
(Heteroscedasticity)

Assumption 3:
$E\left(\varepsilon_{i} \varepsilon_{j} \mid x\right)=0$
Model assumptions

Regression Analysis

Simple linear regression model
Model assumptions

Assumption 4:

Sample- $\operatorname{Var}(x)=S^{2}(x)=1 / n \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>0$ und
$\lim \overline{\mathrm{x}^{2}}<\infty$
$\mathrm{n} \rightarrow \infty$

$$
\overline{x^{2}}=1 / n \sum_{i=1}^{n} x_{i}^{2}
$$

und
$\lim S^{2}(X)>0$
n $\rightarrow \infty$

Under these 5 assumptions the OLS-Estimators are Best Linear Unbiased Esimator (BLUE).
It means that they are the efficient ones amongst the set of unbiased linear estimators

Assumption 6: (not always necessary)

For given x the error term ε is normally distributed

