Homework assignment #1 for Random Fields I

Due Thursday, May 07, 2009

- 1. Prove the existence of a random field with the following finite dimensional distributions and specify the measurable spaces $(E_{t_1...t_n}, \mathcal{E}_{t_1...,t_n})$.
 - a) The finite dimensional distributions are multivariate Gaussian.
 - b) The marginals are Poisson and X_t , X_s are independent for $t \neq s$.
- 2. Give an example for a family of probability measures $\{P_{t_1...t_n}\}$ which do not fulfil the conditions in the theorem of Kolmogorov.
- 3. Prove Proposition 1.1.2: The family of measures $\{P_{t_1...t_n} \text{ on } (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n,)), n \geq 1, t_1, \ldots, t_n \in T\}$ satisfies the conditions in the theorem of Kolmogorov (i.e. symmetry and consistency) if and only if $\forall n \geq 2, \forall s = (s_1, \ldots, s_n)^{\top} \in \mathbb{R}^n$, the following two conditions hold:

$$- \varphi_{P_{t_1...t_n}} \left((s_1, \dots, s_n)^\top \right) = \varphi_{P_{t_i_1...t_{i_n}}} \left((s_{i_1}, \dots, s_{i_n})^\top \right) \text{ for any permutation} (i_1, \dots, i_n) \text{ of } (1, \dots, n), - \varphi_{P_{t_1...t_{n-1}}} \left((s_1, \dots, s_{n-1})^\top \right) = \varphi_{P_{t_1...t_n}} \left((s_1, \dots, s_{n-1}, 0)^\top \right).$$

- 4. Give an example (not the one presented in the lecture) of a non-continuous random function which has a continuous modification.
- 5. Let the probability space (Ω, \mathcal{F}, P) be given by the unit interval $\Omega = [0, 1]$, the Borel sigma algebra $\mathcal{F} = \mathcal{B}([0, 1])$ and the Lebesgue measure $P = \lambda$. The binary expansion of $\omega \in \Omega$ is given by $\omega = \sum_{k=1}^{\infty} a_k(\omega) 2^{-k}$ with coefficients $a_1(\omega), a_2(\omega), \ldots \in \{0, 1\}$. In cases where this representation is not unique (for example $0.5 = 1 \cdot 2^{-1} + \sum_{k=2}^{\infty} 0 \cdot 2^{-k} = 0 \cdot 2^{-1} + \sum_{k=2}^{\infty} 1 \cdot 2^{-k}$) we use the "shorter" variant filled up with zeros.
 - a) Prove that for each $k \in \mathbb{N}$, a_k is Bernoulli distributed with parameter 0.5, i.e. $\mathbb{P}(a_k = 0) = \mathbb{P}(a_k = 1) = 0.5$.
 - b) Prove that the random variable ξ defined by $\xi(\omega) = \sum_{k=1}^{\infty} a_k(\omega) 2^{-k}$ is uniformly distributed on the unit interval [0, 1].