Homework assignment #3 for Random Fields I

Due Thursday, May 28, 2009

- 1. Let Φ be a homogeneous Poisson process in \mathbb{R}^d of intensity $\lambda > 0$.
 - a) Independent thinning: Each point of Φ is retained with probability $p \in (0, 1)$ and deleted with probability 1 - p, independently of other points. Prove that the thinned process $\tilde{\Phi}$ is a homogeneous Poisson process of intensity λp .
 - b) Superposition: The superposition of two independent Poisson processes Φ_1 with intensity λ_1 and Φ_2 with intensity λ_2 is the union $\widetilde{\Phi} = \Phi_1 \cup \Phi_2$. Prove that $\widetilde{\Phi}$ is a homogeneous Poisson process with intensity $\lambda_1 + \lambda_2$.

Hint: The void probabilities of a point process are defined by $v_B = P(\Phi(B) = 0)$ for all Borel sets B. A simple point process is characterized by the void probabilities v_B as B ranges through the Borel sets.

- 2. Consider the Shot-Noise-Field $X_t = \sum_{v \in \Phi} g(t-v)$ where Φ is a homogeneous Poisson process of intensity λ and $g : \mathbb{R}^d \to \mathbb{R}$ is a deterministic function fulfilling some integrability conditions. Prove that
 - a) $\mathbb{E}X_t = \lambda \int_{\mathbb{R}^d} g(z) dz$
 - b) Cov $(X_t, X_s) = \lambda \int_{\mathbb{R}^d} g(t s z) g(z) dz.$

Hint: Campbell's theorem can be useful: Let Φ be a homogeneous Poisson process in \mathbb{R}^d with intensity λ and $f : \mathbb{R}^d \to \mathbb{R}$ a non-negative measurable function. Then it holds that

$$\mathbb{E}\sum_{v\in\Phi}f\left(v\right)=\lambda\int_{\mathbb{R}^{d}}f\left(z\right)dz.$$

Further, it holds that

$$\mathbb{E}\sum_{v,w\in\Phi\atop v\neq w} f(v) g(w) = \lambda^2 \int_{\mathbb{R}^d} f(z) dz \int_{\mathbb{R}^d} g(z) dz$$

- 3. Consider the Ising model given in the lecture.
 - a) Prove that the Ising model has the Markov property with respect to the 4neighbourhood relation \sim_4 . Does the Ising model possess the Markov property with respect to the 8-neighbourhood relation \sim_8 ?

b) For any $\Gamma \subset T_N$ the joint distribution of the system of random variables $\{X_t, t \in \Gamma\}$ is denoted by $P_{T_N}^{\Gamma}$, i.e. for $\Gamma = \{t_1, \ldots, t_n\}$ and $x_{t_1}, \ldots, x_{t_n} = \pm 1$ it holds that $P_{T_N}^{\Gamma}(x_{t_1}, \ldots, x_{t_n}) = P(X_{t_1} = x_{t_1}, \ldots, X_{t_n} = x_{t_n})$. For any such Γ the expectation $\sigma_{\Gamma} = \mathbb{E} \prod_{t \in \Gamma} X_t$ is called correlation function.

Prove that the probabilities $P_{T_N}^{\Gamma}$ can be expressed in terms of the correlation functions σ_{Γ} as follows:

$$P_{T_N}^{\Gamma}(x_{t_1},\ldots,x_{t_n}) = \frac{(-1)^k}{2^n} \sum_{\Gamma' \subset \Gamma} C_{\Gamma'} \sigma_{\Gamma'}$$

where k is the number of values x_{t_i} equal to -1 and $C_{\Gamma'} = \prod_{t \in \Gamma \setminus \Gamma'} x_t$.

c) Assume that J = 0, i.e. there is no interaction between the particles. Prove that for any $\Gamma \subset T_N$ the correlation function σ_{Γ} is given by

$$\sigma_{\Gamma} = \left(\frac{\exp\left(-\frac{mB}{K_0 t_0}\right) - \exp\left(\frac{mB}{K_0 t_0}\right)}{\exp\left(-\frac{mB}{K_0 t_0}\right) + \exp\left(\frac{mB}{K_0 t_0}\right)}\right)^{|\Gamma|}.$$

4. Prove that the covariance function $C(t,s) = \mathbb{E}X_t X_s - \mathbb{E}X_t \mathbb{E}X_s$ of a random field X is positive semi-definite, i.e. $\forall n \in \mathbb{N}, \forall t_1, \ldots, t_n \in T, \forall z_1, \ldots, z_n \in \mathbb{R}$ it holds that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} C\left(t_i, t_j\right) z_i z_j \ge 0.$$

- 5. The process $X = \{X_t, t \in [0, \infty)\}$ is defined as follows: X_0 takes values +1 and -1 with probability 1/2 each and $X_t = X_0 \cdot (-1)^{Y([0,t])}$ for t > 0 where Y is a homogeneous Poisson process on $[0, \infty)$ with intensity $\lambda > 0$, independent of X_0 . See Figure 1 (a) for a trajectory of X.
 - a) Compute the expectation function of X and its covariance function.
 - b) Let's assume that the process X takes not only values ± 1 but when the kth point of Y occurs, it assumes a random value V_k and retains that value till the next point of Y occurs, i.e. $X_0 = V_0$ and $X_t = V_{Y([0,t])}$ for t > 0 where V_0, V_1, \ldots are i.i.d. random variables with $V_0 \sim \mathcal{N}(0, \sigma^2)$. Figure 1 (b) shows a trajectory of \widetilde{X} . Specify the marginal distribution. Is it a Gaussian process?

(a) Trajectory of the process X in Exercise 5 a).

(b) Trajectory of the process \widetilde{X} in Exercise 5 b).

