Homework assignment #6 for Random Fields I

Due Thursday, July 02, 2009

1. Give an example of a random process which is not stochastically continuous.

2. Prove Lemma 1.5.2 given in the lecture: For any \(t_0 \in T \) and some random variable \(Y \) with \(\mathbb{E} Y^2 < \infty \), the following statements are equivalent:

 1) \(X_s \xrightarrow{L^2} Y \) as \(s \to t_0 \)

 2) \(C(s,t) \xrightarrow{} \mathbb{E} Y^2 \) as \(s,t \to t_0 \)

 Hint: For 1) \(\Rightarrow \) 2), first prove the following fact: If \(X_n \xrightarrow{L^2} X \) and \(Y_n \xrightarrow{L^2} Y \) for some random sequences \(\{X_n\} \) and \(\{Y_n\} \) and random variables \(X \) and \(Y \), then \(\mathbb{E}(X_nY_n) \to \mathbb{E}(XY) \) as \(n,m \to \infty \). For 2) \(\Rightarrow \) 1), prove that \(\{X_s\} \) is a fundamental sequence in the \(L^2 \)-sense as \(s \to t_0 \).

3. Show that

 a) the Wiener process is not even stochastically differentiable at any \(t \in [0, \infty) \).

 b) the homogeneous Poisson process on the real line is stochastically differentiable, but not in \(p \)-mean \(\forall p > 1 \).

4. Let \(T = \mathbb{N}_0 \) and \(E \) be a countable phase space. The process \(X = \{X_t, t \in T\} \) is called a (discrete-time) Markov chain if it satisfies the Markov property: for any \(n \geq 1 \), any \(t, t_1, \ldots, t_n \in T \) with \(t_1 < \ldots < t_n < t \), and any \(i_1, \ldots, i_n, j \in E \),

 \[\mathbb{P}(X_t = j \mid X_{t_1} = i_1, \ldots, X_{t_n} = i_n) = \mathbb{P}(X_t = j \mid X_{t_n} = i_n) . \]

 The initial distribution \(\alpha = (\alpha_j, j \in E) \) is given by \(\alpha_j = \mathbb{P}(X_0 = j) \) and the transition probabilities \(p_{ij}(s,t) \) are given by \(p_{ij}(s,t) = \mathbb{P}(X_t = j \mid X_s = i) \) for \(t \geq s \), and \(i, j \in E \). The chain \(X \) is called homogeneous, if \(p_{ij}(s,t) \) depends on \(s \) and \(t \) only through \(t - s \). Then it is enough to know \(\alpha \) and the 1-step transition matrix \(P = (p_{ij}) \) with \(p_{ij} = \mathbb{P}(X_{n+1} = j \mid X_n = i) \), \(n \geq 0 \). The n-step transition matrix \(P^{(n)} \) is given by \(P^{(n)} = \left(p_{ij}^{(n)}\right) \) with the n-step transition probabilites \(p_{ij}^{(n)} = \mathbb{P}(X_n = j \mid X_0 = i) \). The Chapman-Kolmogorov equation states that \(P^{(n+m)} = P^{(n)}P^{(m)} \) for any \(n, m \in \mathbb{N} \).

 a) Prove the Chapman-Kolmogorov equation.

 b) Give an example for a stochastic process with \(T = \mathbb{N}_0 \) and countable phase space \(E \) which satisfies the Chapman-Kolmogorov equation but does not fulfil the Markov property.