Junior-Prof. Dr. Z. Kabluchko Wolfgang Karcher Summer term 2010 21th April 2010

Risk Theory

Exercise Sheet 1

Due to: 28th April 2010

Exercise 1 (6 points)

Let $X \sim \text{Exp}(\lambda)$ be exponentially distributed with parameter $\lambda > 0$.

- (a) Compute $\mathbb{P}[X > u]$ for u > 0.
- (b) Compute $\mathbb{P}[a \leq X \leq b]$ for $0 < a < b < \infty$.
- (c) Show that for every u, v > 0, $\mathbb{P}[X > u + v | X > u] = \mathbb{P}[X > v]$.

Exercise 2 (6 points)

Let $X \sim W(r, c)$ be Weibull distributed with parameters r, c > 0. The density of X is given by $f_X(t) = rct^{r-1}e^{-ct^r}\mathbf{1}_{t\geq 0}$.

- (a) Compute $\mathbb{P}[X > u]$ for u > 0.
- (b) Compute the expectation $\mathbb{E}X$.
- (c) Compute the variance $\operatorname{Var} X$.

Exercise 3 (6 points)

Let $X \sim \text{Gamma}(\alpha, \lambda)$ be Gamma-distributed with parameters $\alpha > 0, \lambda > 0$.

(a) Show that the density of the random variable $Y := e^X$ is given by

$$f_Y(t) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{-(\lambda+1)} \log^{\alpha-1}(t) \mathbf{1}_{t>1}.$$

- (b) Compute $\mathbb{E}Y$ for $\lambda > 1$ and show that $\mathbb{E}Y = +\infty$ for $\lambda \in (0, 1)$.
- (c) Compute Var Y for $\lambda > 2$ and show that Var Y does not exist for $\lambda \in (0, 2)$.

Exercise 4 (6 points)

Let X_1, \ldots, X_n be independent and identically distributed real-valued random variables with $\mathbb{P}[X_1 > 0] = 1$. Show that

$$\mathbb{E}\left[\frac{X_1}{X_1+\ldots+X_n}\right] = \frac{1}{n}.$$