Risk Theory
Exercise Sheet 1
Due to: 28th April 2010

Exercise 1 (6 points)
Let $X \sim \text{Exp}(\lambda)$ be exponentially distributed with parameter $\lambda > 0$.

(a) Compute $\mathbb{P}[X > u]$ for $u > 0$.

(b) Compute $\mathbb{P}[a \leq X \leq b]$ for $0 < a < b < \infty$.

(c) Show that for every $u, v > 0$, $\mathbb{P}[X > u + v | X > u] = \mathbb{P}[X > v]$.

Exercise 2 (6 points)
Let $X \sim \text{W}(r, c)$ be Weibull distributed with parameters $r, c > 0$. The density of X is given by

$$f_X(t) = rct^{r-1}e^{-ct}1_{t \geq 0}.$$

(a) Compute $\mathbb{P}[X > u]$ for $u > 0$.

(b) Compute the expectation $\mathbb{E}X$.

(c) Compute the variance $\text{Var}X$.

Exercise 3 (6 points)
Let $X \sim \text{Gamma}(\alpha, \lambda)$ be Gamma-distributed with parameters $\alpha > 0, \lambda > 0$.

(a) Show that the density of the random variable $Y := e^X$ is given by

$$f_Y(t) = \frac{\lambda^\alpha}{\Gamma(\alpha)} t^{-(\alpha+1)} \log^{-1} \log^{-1}(t)1_{t > 1}.$$

(b) Compute $\mathbb{E}Y$ for $\lambda > 1$ and show that $\mathbb{E}Y = +\infty$ for $\lambda \in (0, 1)$.

(c) Compute $\text{Var}Y$ for $\lambda > 2$ and show that $\text{Var}Y$ does not exist for $\lambda \in (0, 2)$.

Exercise 4 (6 points)
Let X_1, \ldots, X_n be independent and identically distributed real-valued random variables with $\mathbb{P}[X_1 > 0] = 1$. Show that

$$\mathbb{E} \left[\frac{X_1}{X_1 + \ldots + X_n} \right] = \frac{1}{n}.$$