Risk Theory

Exercise Sheet 4
Due to: 19th May 2010

Exercise 1 (6 points) A characterization of the Bin, Poi, and $\widetilde{N B}$ distributions
Given a random variable X with values in $\mathbb{N} \cup\{0\}$, we define $q_{n}=\mathbb{P}[X=n], n \in \mathbb{N} \cup\{0\}$. Prove that if $X \sim \operatorname{Bin}(n, p)$ for some $n \in \mathbb{N}, p \in(0,1)$ or $X \sim \widetilde{N B}(c, p)$ for some $c>0, p \in(0,1)$, then there exist $a, b \in \mathbb{R}$ such that $q_{n}=\left(a+\frac{b}{n}\right) q_{n-1}$ for all $n \in \mathbb{N}$.
Remark. Recall that we write $X \sim \widetilde{N B}(c, p)$ if $\mathbb{P}[X=n]=\binom{n+c-1}{n} p^{c}(1-p)^{n}$ for all $n \in \mathbb{N} \cup\{0\}$. Exercise 2 (6 points) Recursion equations for geometric and logarithmic distributions
(a) A random variable X has logarithmic distribution with parameter $p \in(0,1)$ (notation: $X \sim \log (p))$, if

$$
\mathbb{P}[X=n]=-\frac{1}{\log (1-p)} \cdot \frac{p^{n}}{n}, \quad n \in \mathbb{N}
$$

Show that this is indeed a well-defined probability distribution and compute its expectation.
(b) Given a random variable X with values in \mathbb{N}, we define $q_{n}=\mathbb{P}[X=n], n \in \mathbb{N}$. Show that if $X \sim \operatorname{Geo}(p)$ or $X \sim \log (p)$, then there exist $a, b \in \mathbb{R}$ such that $q_{n}=\left(a+\frac{b}{n}\right) q_{n-1}$ for all $n=2,3, \ldots$.

Exercise 3 (6 points) First claim arrival in a Beta-mixed Bernoulli process
Consider the following experiment: first, a random variable $P \sim \operatorname{Beta}(\alpha, \beta)$ is generated. Then, a coin having the probability P of landing heads is tossed infinitely often. Let T_{1} be the time at which it lands heads for the first time. Show that

$$
\mathbb{P}\left[T_{1}=n\right]=\frac{B(\alpha+1, \beta+n-1)}{B(\alpha, \beta)}, \quad n \in \mathbb{N} .
$$

Remark. A random variable X is said to have Beta distribution with parameters $\alpha, \beta>0$ (notation: $X \sim \operatorname{Beta}(\alpha, \beta)$), if the density of X is given by

$$
f_{X}(t)=\frac{1}{B(\alpha, \beta)} t^{\alpha-1}(1-t)^{\beta-1} 1_{t \in(0,1)} .
$$

Here, $B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} d t$ is the Beta function.
Exercise 4 (6 points) Negative hypergeometric distribution
(a) Consider an urn containing R red and $N-R$ green balls. Fix some number $r \in \mathbb{N}$, $1 \leq r \leq R$. We draw the balls from the urn without replacement (ohne Zurücklegen) until the number of red balls we have collected reaches the value r. Let X be the total number of balls we have drawn. Compute the probability $\mathbb{P}[X=n]$ for all $n=r, r+1, \ldots$.
(b) The distribution of X is called negative hypergeometric. What detail in the description of the experiment has to be changed in order to obtain the negative binomial (resp. hypergeometric) distribution?

