Junior-Prof. Dr. Z. Kabluchko Wolfgang Karcher Summer term 2010 26th May 2010

Risk Theory

Exercise Sheet 6

Due to: 2nd June 2010

Exercise 1 (6 points) Hazard rate and mean excess function of the Pareto distribution

Let a random variable X be Pareto-distributed with parameters $\alpha > 0, c > 0$, i.e., the distribution function of X is given by $F_X(t) = 1 - {\binom{c}{t}}^{\alpha}, t > c$. Compute the hazard rate and the mean excess function of X.

Hint. The mean excess function is given by the formula $e_X(t) = (\bar{F}_X(t))^{-1} \int_t^\infty \bar{F}_X(s) ds$.

Exercise 2 (6 points) Benktander type II distribution

A random variable X has Benktander type II distribution with parameters $a > 0, b \in (0, 1)$ and $c \in (0, e^{a/b}/a)$ if the distribution function of X is given by

$$F_X(t) = 1 - cat^{b-1}e^{-(a/b)t^b}, \quad t > 1.$$

Compute the hazard rate and the mean excess function of X and show that X is heavy-tailed.

Exercise 3 (6 points) Gumbel and Fréchet distribution

(a) A random variable X has Gumbel distribution if the distribution function of X is given by $F_X(t) = e^{-e^{-t}}$ for every $t \in \mathbb{R}$. Show that

$$\bar{F}_X(t) \sim e^{-t}, \quad t \to +\infty.$$

Show that the Gumbel distribution is light-tailed.

(b) A random variable X has Fréchet distribution with parameter $\alpha > 0$ if the distribution function of X is given by $F_X(t) = e^{-t^{-\alpha}}$ for every t > 0. Show that the Fréchet distribution is heavy-tailed.

Exercise 4 (6 points) *Limit laws for maxima of i.i.d. random variables*

(a) Let X_1, X_2, \ldots be independent random variables having an exponential distribution with $\lambda = 1$. Define $M_n = \max(X_1, \ldots, X_n)$. Show that for every $t \in \mathbb{R}$,

$$\lim_{n \to \infty} \mathbb{P}\left(M_n - \log n \le t\right) = e^{-e^{-t}}.$$

(b) Let X_1, X_2, \ldots be independent random variables having a Pareto distribution with parameters $\alpha > 0, c > 0$. Define $M_n = \max(X_1, \ldots, X_n)$ Show that for every t > 0,

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{M_n}{cn^{1/\alpha}} \le t\right) = e^{-t^{-\alpha}}.$$