Supplement for Exercise 3, Sheet 2

It holds:

$$
\sum_{j=m}^{k-1}\binom{j-1}{m-1}=\binom{k-1}{m}, \quad m \in \mathbb{N}, \quad k>m
$$

Proof. (i) Right hand side: There are $\binom{k-1}{m}$ possibilities to choose m elements from $\{1, \ldots, k-1\}$.
(ii) Left hand side: Let $j \in\{m, \ldots, k-1\}$. There are $\binom{j-1}{m-1}$ possibilities such that the number j is the largest number of the chosen elements from (i).
(iii) Obviously, the events in (ii) are disjoint. Therefore, the number of possibilities can be summed up for $j=m, \ldots, k-1: \sum_{j=m}^{k-1}\binom{j-1}{m-1}$.

$$
\stackrel{(i)-(i i i i)}{\Longrightarrow} \sum_{j=m}^{k-1}\binom{j-1}{m-1}=\binom{k-1}{m}, \quad m \in \mathbb{N}, \quad k>m .
$$

