The application of probabilistic method in graph theory
Probabilistic method

The **probabilistic method** is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object.

There are two ways to use the probabilistic method:

1. Showing the probability of the mathematical object is greater than 0
2. Calculating the exception of some random variable
Was ist der Graph?

Graph is an ordered pair \(G = G(V, E) \), comprising a set \(V \) of vertices together with a set \(E \) of edges.

If the graph is directed, \(E \) is a subset of Cartesian product \(V \times V \).

If the graph is undirected, \(E \) is a two-element subset of \(V \) or empty set \(\emptyset \).

Complete Graph \(G(V,E) \) (directed):

For all \(x, y \in V, x \neq y \): \((x,y) \in E \) and \((x,x) \) doesn't exist for all \(x \in V \)

Subgraph \(G^*(V^*,E^*) \) of graph \(G(V,E) \):

\[
V^* \subseteq V \text{ and } E^* \subseteq E
\]
The application of probabilistic method in graph theory | Jiayi Li | 10.06.2010

undirected graph

directed graph
Ramsey number $R(k,l)$

Def.

The smallest integer n such that in any 2-coloring (here red and blue) of the edges of a complete graph on n vertices, there either is a red K_k (a complete subgraph on k vertices, all of whose edges are colored red), or there is a blue K_l.

$R(3,3) = 6$

Vertex = 5

Vertex = 6
<table>
<thead>
<tr>
<th>r, s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>36</td>
<td>40-43</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>18</td>
<td>25</td>
<td>35-41</td>
<td>49-61</td>
<td>56-84</td>
<td>73-115</td>
<td>92-149</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>25</td>
<td>43-49</td>
<td>58-87</td>
<td>80-143</td>
<td>101-216</td>
<td>125-316</td>
<td>143-442</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>35-41</td>
<td>58-87</td>
<td>102-165</td>
<td>113-298</td>
<td>127-495</td>
<td>169-780</td>
<td>179-1171</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>23</td>
<td>49-61</td>
<td>80-143</td>
<td>113-298</td>
<td>205-540</td>
<td>216-1031</td>
<td>233-1713</td>
<td>289-2826</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>28</td>
<td>56-84</td>
<td>101-216</td>
<td>127-495</td>
<td>216-1031</td>
<td>282-1870</td>
<td>317-3583</td>
<td>317-6090</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>40-43</td>
<td>92-149</td>
<td>143-442</td>
<td>179-1171</td>
<td>289-2826</td>
<td>317-6090</td>
<td>580-12677</td>
<td>798-23556</td>
</tr>
</tbody>
</table>
Proposition

If \(\binom{n}{k} 2^{1-\binom{k}{2}} < 1 \), then \(R(k, k) > n \). Thus \(R(k,k) > 2^{\frac{k}{2}} \) for all \(k \geq 3 \).
Proof

For any fixed set R of k vertices, let A_R be the event that the induced subgraph of K_n on R is **monochromatic** (either all its edges are red or blue). Then the probability of P_R is

$$\Pr(A_R) = 2^{1 - \binom{k}{2}}$$

If

$$\binom{n}{k} 2^{1 - \binom{k}{2}} < 1$$

thus with positive probability, no events A_R occurs and there is a 2-coloring of K_n, that is, $R(k,k) > n$.
Note that if $k \geq 3$ and we take $n = \left\lfloor \frac{k}{2^2} \right\rfloor$, then

$$\binom{n}{k} \cdot 2^{1 - \binom{k}{2}} < 2^{1 + \frac{k}{2}} \cdot \frac{n^k}{k!} \cdot \frac{k^2}{2^{21}} < 1$$

and hence $R(k, k) > 2^2$ for all $k \geq 3$.
Linearity of Expectation

Let X_1, \ldots, X_n be random variables, $X = c_1 X_1 + \ldots + c_n X_n$. Linearity of expectation states that

$$E[X] = c_1 E[X_1] + \cdots + c_n E[X_n]$$

Let σ be a random permutation on $\{1, \ldots, n\}$, uniformly chosen. Let X be the number of fixed points of σ. Then

$$E[X_i] = \Pr[\sigma(i) = i] = \frac{1}{n},$$

where X_i is the indicator random variable of the event $\sigma(i) = i$.
We decompose $X = X_1 + \ldots + X_n$, so that

$$E[X] = \sum_{i=1}^{n} E[X_i] = \frac{1}{n} + \ldots + \frac{1}{n} = 1.$$
Tournament

A **tournament** is a graph obtained by assigning a direction for each edge in an undirected complete graph.
Hamiltonian path = a path that visits each vertex exactly once
$\sigma = (1,3,5,2,4)$

Hamiltonian path
not Hamiltonian path
Theorem

There is a tournament T (graph) with n players (vertices) and at least $n! \cdot 2^{-(n-1)}$ Hamiltonian path.
Proof

Let X be the number of Hamiltonian paths. For each permutation σ, let X_σ be the indicator random variable for σ giving a Hamiltonian path. Then $X = \sum X_\sigma$ and

$$E[X] = \sum_{\sigma} E[X_\sigma] = n!2^{-\binom{n}{2}}$$

Thus some tournament has at least $E[X]$ Hamiltonian paths.
Def.

\[
girth(G) = \text{the size of the smallest circuit in graph } G
\]

\[
\alpha(G) = \text{the size of the largest independent set in } G
\]

\[
\chi(G) = \text{the smallest number of colors needed to color a Graph } G
\]
girth(G) = 6

α(G) = 4, χ(G) = 3
Theorem (Erdös [1959])

For all k, l there exists a graph G with $\text{girth}(G) > l$ and $\chi(G) > k$.
Proof

Fix \(\theta < 1/l \), let \(G \sim G(n, p) \) with probability \(p = n^{\theta-1} \). Let \(X \) be the number of circuits of size at most \(l \). Then

\[
E[X] = \sum_{i=3}^{l} \frac{n!}{2i \cdot (n-i)!} p^i \leq \sum_{i=3}^{l} \frac{n^{\theta i}}{2i}
\]

With Markov’s inequality we know

\[
\Pr\left[X \geq \frac{n}{2}\right] \leq \frac{2}{n} E[X] \rightarrow 0, \text{if } n \rightarrow \infty
\]
Set \(x = \left(\frac{3}{p}\right) \ln n \) so that

\[
\Pr[\alpha(G) \geq x] \leq \binom{n}{x} (1 - p)^{\binom{x}{2}} < \left[e^{\ln n - p(x-1)/2} \right]^x \rightarrow 0, \text{if } n \to \infty
\]

If \(n \) is large enough, the probability of these two events is less than. Then there exists a \(G \) with less than \(n/2 \) cycles of length less than \(l \) and with \(\alpha(G) < 3n^{1-\theta} \ln n \).

Now we should use a trick, from \(G \) a vertex from each cycle of length at most \(l \) to remove. The new graph \(G^* \) have at least \(n/2 \) vertices and its girth is greater than \(l \). Thus

\[
\chi(G^*) \geq \frac{|G^*|}{\alpha(G^*)} \geq \frac{n/2}{3n^{1-\theta} \ln n} = \frac{n^\theta}{6 \ln n}
\]

If \(N \) large enough, then \(\chi(G^*) > k \)
Conclusion

Although the proof uses probability, the final conclusion is determined for certain, without any possible error.
Vielen Dank für Ihre Aufmerksamkeit!