

ulm university universität **UUUM** 

# The application of probabilistic method in graph theory

Jiayi Li

#### **Probabilistic method**

The **probabilistic method** is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object.

There are two ways to use the probabilistic method:

- 1. Showing the probability of the mathematical object is greater than 0
- 2. Calculating the exception of some random variable

#### Was ist der Graph?

Graph is an ordered pair G = G(V, E), comprising a set V of vertices together with a set E of edges.

If the graph is directed , E is a subset of Cartesian product V x V. If the graph is undirected , E is a two-element subset of V or empty set Ø.

Complete Graph G(V,E) (directed):

For all  $x, y \in V, x \neq y$ :  $(x,y) \in E$  and (x,x) doesn't exisit for all  $x \in V$ 

Subgraph G\*(V\*,E\*) of graph G(V,E):  $V^* \subset V \text{ and } E^* \subset E$ 





undirected graph

directed graph

## Ramsey number R(k,l)

Def.

The smallest integer n such that in any 2-coloring (here red and blue) of the edges of a complete graph on n vertices, there either is a red  $K_k$  (a complete subgraph on k vertices , all of whose edges are colored red), or there is a blue  $K_l$ .

R(3,3) = 6





Vertex = 5

Vertex = 6

| r, s | 1 | 2  | 3     | 4        | 5         | 6          | 7          | 8          | 9           | 10          |
|------|---|----|-------|----------|-----------|------------|------------|------------|-------------|-------------|
| 1    | 1 | 1  | -     | 1        | 1         | 1          | 1          | L          | 1           | 1           |
| 2    | 1 | 2  | 3     | 4        | 5         | 6          | 7          | 8          | 9           | 10          |
| 3    | 1 | 3  | 6     | 9        | 14        | 18         | 23         | 28         | 36          | 40 - 43     |
| 4    | 1 | 4  | 9     | 18       | 25        | 35 - 41    | 49 - 61    | 56 - 84    | 73 - 115    | 92 - 149    |
| 5    | 1 | 5  | 14    | 25       | 43-49     | 58 - 87    | 80 - 143   | 101 - 216  | 125 - 316   | 143 - 442   |
| 6    | 1 | 6  | 18    | 35-41    | 58 - 87   | 102 - 165  | 113 - 298  | 127 – 495  | 169 - 780   | 179 - 1171  |
| 7    | 1 | 7  | 23    | 49-61    | 80 - 143  | 113 - 298  | 205 - 540  | 216 - 1031 | 233 - 1713  | 289 - 2826  |
| 8    | 1 | 8  | 28    | 56-84    | 101 - 216 | 127 - 495  | 216 - 1031 | 282 - 1870 | 317 - 3583  | 317-6090    |
| 9    | 1 | 9  | 36    | 73-115   | 125 - 316 | 169 - 780  | 233 - 1713 | 317 - 3583 | 565 - 6588  | 580 - 12677 |
| 10   | 1 | 10 | 40-43 | 92 - 149 | 143 - 442 | 179 - 1171 | 289 - 2826 | 317-6090   | 580 - 12677 | 798 - 23556 |

#### **Proposition**

If 
$$\binom{n}{k} 2^{1-\binom{k}{2}} < 1$$
, then  $R(k,k) > n$ . Thus  $R(k,k) > 2^{\frac{k}{2}}$  for all  $k \ge 3$ .

#### Proof

For any fixed set R of k vertices, let  $A_R$  be the event that the induced subgraph of  $K_n$  on R is <u>monochromatic</u> (either all its edges are red or blue). Then the probability of Pr is

$$\Pr(A_R) = 2^{1 - \binom{k}{2}}$$

If  $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ , thus with positive probability, no events  $A_R$  occurs and there is a 2-coloring of  $K_n$ , that is, R(k,k) > n.

Note that if  $k \ge 3$  and we take  $n = \begin{bmatrix} 2^{\frac{k}{2}} \end{bmatrix}$  ,then

$$\binom{n}{k} \cdot 2^{1 - \binom{k}{2}} < \frac{2^{1 + \frac{k}{2}}}{k!} \cdot \frac{n^{k}}{2^{\frac{k^{2}}{2}}} < 1$$

and hence 
$$R(k,k) > 2^{\frac{k}{2}}$$
 for all  $k \ge 3$ .

#### **Linearity of Expectation**

Let  $X_1,...,X_n$  be random variables ,  $X = c_1X_1 + ... + c_nX_n$ . Linearity of expectation states that

$$E[X] = c_1 E[X_1] + \dots + c_n E[X_n]$$

Let  $\sigma$  be a random permutation on{1,...,n}, uniformly chosen. Let X be the number of fixed points of  $\sigma$ . Then

$$E[X_i] = \Pr[\sigma(i) = i] = \frac{1}{n} ,$$

where Xi is the indicator random variable of the event  $\sigma(i)=i$ .

We decompose  $X = X_1 + ... + X_n$ , so that

$$E[X] = \sum_{i=1}^{n} E[X_i] = \frac{1}{n} + \dots + \frac{1}{n} = 1.$$

## Tournament

A **tournament** is a graph obtained by assigning a direction for each edge in an undirected complete graph.



## Hamiltonian path = a path that visits each vertex exactly once



# σ= (1,3,5,2,4)



Hamiltonian path

not Hamiltonian path

#### Theorem

There is a tournament T (graph) with n players (vertices) and at least  $n!2^{-(n-1)}$ Hamiltonian path.

# Proof

Let X be the number of Hamiltonian paths . For each permutation  $\sigma$ , let X<sub> $\sigma$ </sub> be the indicator random variable for  $\sigma$  giving a Hamiltonian path. Then X= $\Sigma$ X<sub> $\sigma$ </sub> and

$$E[X] = \sum_{\sigma} E[X_{\sigma}] = n! 2^{-(n-1)}$$

Thus some tournament has at least E[X] Hamiltonian paths.

#### Def.

girth(G) = the size of the smallest circuit in graph G

 $\alpha(G)$  = the size of the largest independent set in G

 $\chi(G)$  = the smallest number of colors needed to color a Graph G





girth(G) = 6 
$$\alpha(G) = 4, \chi(G) = 3$$

#### Theorem (Erdös [1959])

For all k , I there exists a graph G with girth(G) > I and  $\chi(G)$  >k.

# Proof

Fix  $\theta < 1/I$ , let G ~ G (n , p) with probability p = n<sup> $\theta$ -1</sup>. Let X be the number of circuits of size at most I. Then

$$E[X] = \sum_{i=3}^{l} \frac{n!}{2i \cdot (n-i)!} p^{i} \le \sum_{i=3}^{l} \frac{n^{\theta i}}{2i}$$

With Markov's inequality we know

$$\Pr\left[X \ge \frac{n}{2}\right] \le \frac{2}{n} E\left[X\right] \to 0, if \ n \to \infty$$

Set 
$$\mathbf{x} = \left[ (3/p) \ln n \right]$$
 so that  

$$\Pr[\alpha(G) \ge x] \le {\binom{n}{x}} (1-p)^{\binom{x}{2}} < \left[ e^{\ln n - p(x-1)/2} \right]^x \to 0, \text{ if } n \to \infty$$

If n is large enough , the probability of these two events is less than . Then there exists a G with less than n/2 cycles of length less than I and with  $\alpha(G) < 3n^{1-\theta}$  lnn.

Now we should use a trick ,from G a vertex from each cycle of length at most I to remove. The new graph **G**\* have at least n/2 vertices and its girth is **greater than I**. Thus

$$\chi(G^*) \ge \frac{|G^*|}{\alpha(G^*)} \ge \frac{n/2}{3n^{1-\theta}\ln n} = \frac{n^{\theta}}{6\ln n}$$

If N large enough ,then  $\chi(G^*) > k$ 

# Conclusion

Although the proof uses probability, the final conclusion is determined for *certain*, without any possible error.

# Vielen Dank für Ihre Aufmerksamkeit!