Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Patrick Dress

6. Juli 2010

Inhaltsverzeichnis

- 1 Schwache Konvergenz von Wahrscheinlichkeitsmaßen
 - Definition
- 2 Verteilungskonvergenz
 - Wiederholung
 - Straffheit von Maßen und Gleichgradige Integrierbarkeit
 - Satz von Slutsky
 - Portemanteau Theorem
- Zentraler Grenzwertsatz
 - Lindeberg-Bedingung
 - Interpretation
 - Zentraler Grenzwertsatz

Motivation (Konvergenz von Wahrscheinlichkeitsmaßen)

Sind P_n , $n \in \mathbb{N}$ und P Wahrscheinlichkeitsmaße über $(\mathbb{R}^k, \mathbb{B}^k)$, so wäre es naheliegend, eine Verteilungskonvergenz $P_n \to P$ durch die Eigenschaft

$$\lim_{n\to\infty} P_n(B) = P(B) \qquad \forall B \in \mathbb{B}^k.$$

zu definieren.

Beispiel (Dirac-Verteilung)

Gelte für $n \in \mathbb{N}$ $P_n(B) = \mathbf{1}_B(1/n)$, $B \in \mathbb{B}^1$.

- **1** Dann gilt $P_n \to \delta_0$ auf dem Punkt 0.
- 2 Es gilt aber NICHT

$$P_n(B) \to \delta_0(B) \quad \forall B \in \mathbb{B}^1$$

Beispiel (Dirac-Verteilung)

Gelte für $n \in \mathbb{N}$ $P_n(B) = \mathbb{1}_B(1/n)$, $B \in \mathbb{B}^1$.

- **1** Dann gilt $P_n \to \delta_0$ auf dem Punkt 0.
- 2 Es gilt aber NICHT

$$P_n(B) \to \delta_0(B) \quad \forall B \in \mathbb{B}^1$$

3 beispielsweise erhält man für $B = (-\infty; 0]$:

$$P_n((-\infty; 0]) = 0 \quad \forall n \in \mathbb{N}, \text{ aber } \delta_0((-\infty; 0]) = 1$$

Beispiel (Dirac-Verteilung)

Gelte für $n \in \mathbb{N}$ $P_n(B) = \mathbb{1}_B(1/n)$, $B \in \mathbb{B}^1$.

- **1** Dann gilt $P_n \to \delta_0$ auf dem Punkt 0.
- 2 Es gilt aber NICHT

$$P_n(B) \to \delta_0(B) \quad \forall B \in \mathbb{B}^1$$

3 beispielsweise erhält man für $B = (-\infty; 0]$:

$$P_n((-\infty; 0]) = 0 \quad \forall n \in \mathbb{N}, \text{ aber } \delta_0((-\infty; 0]) = 1$$

Definition der schwachen Konvergenz von Wahrscheinlichkeitsmaßen

Definition (Schwache Konvergenz (2.Definition))

Es seien P, P_n , $n \in \mathbb{N}$, Wahrscheinlichkeitsmaße über $(\mathbb{R}^k, \mathbb{B}^k)$ mit Verteilungsfunktionen F, F_n , $n \in \mathbb{N}$. F heißt Limesverteilung der Folge $F_n, n \in \mathbb{N}$, wenn gilt

$$\lim_{n\to\infty} F_n(x) = F(x) \qquad \forall x\in C(F).$$

Definition der schwachen Konvergenz von Wahrscheinlichkeitsmaßen

Definition (Schwache Konvergenz (1.Definition))

Eine Folge P_n , $n \in \mathbb{N}$ von Wahrscheinlichkeitsmaßen auf $(\mathbb{R}^k, \mathbb{B}^k)$ konvergiert schwach gegen ein Wahrscheinlichkeitsmaß P auf $(\mathbb{R}^k, \mathbb{B}^k)$, kurz $P_n \xrightarrow{w} P$, wenn

$$\lim_{n\to\infty}\int f\,dP_n=\int f\,dP\qquad\forall f\in C(\mathbb{R}^k).$$

Einleitung Wiederholung Straffheit von Maßen und Gleichgradige Integrierbarkeit Satz von Slutsky Portemanteau Theorem

Definition

Definition (Verteilungskonvergenz)

Es seien X, X_n , $n \in \mathbb{N}$, k-dimensionale Zufallsvektoren mit den Verteilungsfunktionen F^X , F^{X_n} . Die X_n heißen verteilungskonvergent gegen $X(\text{kurz: } X_n \xrightarrow{d} X)$, wenn gilt

$$P^{X_n} \to P^X$$
.

Beispiel

Beispiel (Poissonscher Grenzwertsatz)

Es gelte $X_n \sim Bin(n, p_n)$ mit $p_n = a/n + o(1/n)$, a > 0, d.h.,

$$\lim_{n\to\infty} np_n = a \text{ und}$$

Einleitung

$$X_0 \sim Poi(a)$$
.

Dann sind die X_n verteilungskonvergent gegen X_0 , d.h.,

$$Bin(n, p_n) \rightarrow Poi(a)$$

Es seien X, $X_1, X_2, \ldots : \Omega \to \mathbb{R}$ beliebige Zufallsvariablen. Dann gilt:

•
$$X_n \xrightarrow{fs} X \iff P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$$

•
$$X_n \xrightarrow{P} X \iff \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$

Es seien X, $X_1, X_2, ... : \Omega \to \mathbb{R}$ beliebige Zufallsvariablen. Dann gilt:

•
$$X_n \xrightarrow{fs} X \iff P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$$

•
$$X_n \xrightarrow{P} X \iff \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$

•
$$X_n \xrightarrow{L^r} X \iff \lim_{n \to \infty} E |X_n - X|^r = 0$$
 $r \ge 1$

Es seien X, $X_1, X_2, \ldots : \Omega \to \mathbb{R}$ beliebige Zufallsvariablen. Dann gilt:

•
$$X_n \stackrel{fs}{\longrightarrow} X \iff P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$$

•
$$X_n \xrightarrow{P} X \iff \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$

•
$$X_n \xrightarrow{L^r} X \iff \lim_{n \to \infty} E |X_n - X|^r = 0$$
 $r \ge 1$

•
$$X_n \stackrel{d}{\to} X \iff \lim_{n \to \infty} F^{X_n}(x) = F^X(x) \qquad \forall x \in C(F^X)$$

Es seien X, $X_1, X_2, \ldots : \Omega \to \mathbb{R}$ beliebige Zufallsvariablen. Dann gilt:

•
$$X_n \stackrel{fs}{\longrightarrow} X \iff P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$$

•
$$X_n \xrightarrow{P} X \iff \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$

•
$$X_n \xrightarrow{L^r} X \iff \lim_{n \to \infty} E |X_n - X|^r = 0$$
 $r \ge 1$

•
$$X_n \xrightarrow{d} X \iff \lim_{n \to \infty} F^{X_n}(x) = F^X(x) \qquad \forall x \in C(F^X)$$

Zusammenhang der Konvergenzarten

$$\begin{array}{cccc} \xrightarrow{L^s} & \Longrightarrow & \xrightarrow{L^r} & \\ & \Longrightarrow & r \geq 1 & & & \\ & & & & \downarrow & & \\ \xrightarrow{fs} & \Longrightarrow & \xrightarrow{P} & \Longrightarrow & \xrightarrow{d} & \end{array}$$

Einleitung Wiederholung Straffheit von Maßen und Gleichgradige Integrierbarkeit Satz von Slutsky Portremanteau Theorem

Wiederholung

Satz (Zusammenhang der Konvergenzarten)

$$Aus \ X_n \xrightarrow{P} X \ folgt \ X_n \xrightarrow{d} X.$$

Ist $X \equiv const\ f.s.$, so gilt auch die Umkehrung.

Beispiel

Beispiel (Gegenbeispiel)

Es seien $(X_n)_{n\geqslant 1}$ iid Zufallsvariablen mit $X_n\sim Bin(1,1/2), n\in\mathbb{N}$.

Dann gilt $X_n \xrightarrow{d} X_1$, aber

$$P(|X_n - X_1| > \epsilon) = P(X_n \neq X_1)$$

= 1/2 $\forall \epsilon \in (0, 1] \text{ und } \forall n \geqslant 2$

nicht die stochastische Konvergenz.

Beweis der Hinrichtung

Beweis der Hinrichtung.

Aus $X_n \xrightarrow{P} X$ folgt $f(X_n) \xrightarrow{P} f(X)$ $\forall f \in C(\mathbb{R})$. Dann gilt mit der ||.|| Supremumsnorm auf $C(\mathbb{R})$:

$$|E(f(X_n) - E(f(X)))| \leqslant E|f(X_n) - f(X)|$$

$$\leqslant \epsilon + 2||f||P(|f(X_n) - f(X))| > \epsilon) \qquad \forall \epsilon > 0$$

Einleitung Wiederholung Straffheit von Maßen und Gleichgradige Integrierbarkeit Satz von Slutsky Portemanteau Theorem

Definition der Straffheit von Maßen

Definition (Straffheit von Maßen)

Eine Familie $(P_i)_{i\in I}$ von Wahrscheinlichkeitsmaßen auf $(\mathbb{R}^k,\mathbb{B}^k)$ heißt straff oder auch masseerhaltend, wenn für jedes $\epsilon>0$ ein Kompaktum $K\subset\mathbb{R}^k$ existiert mit

$$\sup_{i\in I} P_i(K^c) < \epsilon$$

Einleitung Wiederholung Straffheit von Maßen und Gleichgradige Integrierbarkeit Satz von Slutsky Portemanteau Theorem

Definition der gleichgradigen Integrierbarkeit

Definition (Gleichgradige Integrierbarkeit)

Eine Familie $(X_i)_{i \in I}$ ist genau dann gleichgradig integrierbar, wenn die durch

$$Q_{i}(B) = \int_{B} |x| P^{X_{i}}(dx), B \in \mathbb{B}$$

definierte Maßfamilie straff ist.

Satz von Slutsky

Satz (von Slutsky)

Aus
$$X_n \xrightarrow{d} X$$
 und $Y_n \xrightarrow{P} c$ folgt
$$f(X_n, Y_n) \xrightarrow{d} f(X, c) \qquad \forall \text{ messbaren Funktionen } f: \mathbb{R}^2 \to \mathbb{R}$$

$$f: \mathbb{R} \times (c - \eta, c + \eta) \subset C(f)$$
 für ein $\eta > 0$.

Satz von Slutsky

Insbesondere gilt:

•
$$X_n + Y_n \xrightarrow{d} X + c$$

•
$$X_n Y_n \xrightarrow{d} XY$$

•
$$X_n/Y_n \xrightarrow{d} X/c$$
: $c \neq 0$, $Y_n \neq 0$ f.s. $\forall n \geqslant 1$

Theorem (Portemanteau Theorem)

- $\lim_{n \to \infty} P_n(\mathbb{R}^k) = P(\mathbb{R}^k) \text{ und } \liminf_{n \to \infty} P_n(A) \leqslant P(A)$ $\forall A \subset \mathbb{R}^k \text{ offen}$

Theorem (Portemanteau Theorem)

- $\lim_{\substack{n\to\infty\\ \forall A\subset\mathbb{R}^k}} P_n(\mathbb{R}^k) = P(\mathbb{R}^k) \text{ und } \liminf_{\substack{n\to\infty\\ n\to\infty}} P_n(A) \leqslant P(A)$
- ① $\lim_{n\to\infty} P_n(\mathbb{R}^k) = P(\mathbb{R}^k)$ und $\limsup_{n\to\infty} P_n(F) \geqslant P(F)$ $\forall F \subset \mathbb{R}^k$ geschlossen

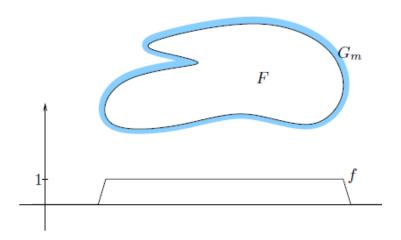
Theorem (Portemanteau Theorem)

- $\lim_{\substack{n \to \infty \\ \forall A \subset \mathbb{R}^k \text{ offen} }} P_n(\mathbb{R}^k) = P(\mathbb{R}^k) \text{ und } \liminf_{\substack{n \to \infty \\ n \to \infty}} P_n(A) \leqslant P(A)$
- $\lim_{n\to\infty} P_n(\mathbb{R}^k) = P(\mathbb{R}^k) \text{ und } \limsup_{n\to\infty} P_n(F) \geqslant P(F)$ $\forall F \subset \mathbb{R}^k \text{ geschlossen}$
- ① $\lim_{n\to\infty} P_n(C) = P(C)$ \forall *P-stetige Mengen* $C \in \mathbb{B}^k$

Theorem (Portemanteau Theorem)

- $\lim_{\substack{n \to \infty \\ \forall A \subset \mathbb{R}^k \text{ offen} }} P_n(\mathbb{R}^k) = P(\mathbb{R}^k) \text{ und } \liminf_{\substack{n \to \infty \\ n \to \infty}} P_n(A) \leqslant P(A)$
- $\lim_{n\to\infty} P_n(\mathbb{R}^k) = P(\mathbb{R}^k) \text{ und } \limsup_{n\to\infty} P_n(F) \geqslant P(F)$ $\forall F \subset \mathbb{R}^k \text{ geschlossen}$
- **1** $\lim_{n\to\infty} P_n(C) = P(C)$ ∀ P-stetige Mengen $C \in \mathbb{B}^k$

Beweisidee zum Portemanteau Theorem



Weitere Sätze zur Konvergenz in Verteilung

Satz

Es seien zwei Folgen $X_n, Y_n : \Omega \to \mathbb{R}^k$ und eine Metrik p gegeben. Dann gilt:

$$X_n \xrightarrow{d} X \text{ und } p(X_n, Y_n) \xrightarrow{P} 0 \Rightarrow Y_n \xrightarrow{d} X.$$

Einleitung Lindeberg-Bedingung Interpretation Zentraler Grenzwertsatz

Motivation

- Einer der fundamentalsten Aussagen der Wahrscheinlichkeitstheorie
- Kernaussage: Die Summe von iid verteilten Zufallsvariablen konvergiert mit wachsendem Umfang gegen die Standardnormalverteilung und ist unabhängig von der konkreten Verteilung der Zufallsvariablen.
- Frage: Lässt sich die Bedingung der identischen Verteilung der Zufallsvariablen auch abschwächen?

Definition

Definition (Lindeberg-Bedingung)

 $X_n, n \in \mathbb{N}$, seien unabhängige Zufallsvariablen mit den induzierten Wahrscheinlichkeitsmaßen $P_n = P^{X_n}$. Die Folge $(X_n)_{n \in \mathbb{N}}$ erfüllt die Lindeberg-Bedingung, wenn für jedes $\delta > 0$ gilt

$$\lim_{n\to\infty}\frac{1}{\tau_n^2}\sum_{j=1}^n\int_{|x-\mu_j|\geqslant\delta\tau_n}(x-\mu_j)^2\,dP_j(x)=0$$

Interpretation der Lindeberg-Bedingung I

Sei

$$A_i := \left\{ \frac{|X_i - \mu_i|}{\sigma_n} > \epsilon \right\}$$

Dann gilt

$$P(A_i) = \int_{|X_i - \mu_i| > \sigma_n \epsilon} dF_{X_i}(x)$$

$$\leq \frac{1}{\epsilon^2 \sigma_n^2} \int_{|X_i - \mu_i| > \sigma_n \epsilon} (x - \mu_i)^2 dF_{X_i}(x)$$

Interpretation der Lindeberg-Bedingung II

$$P\left(\sup \frac{|X_i - \mu_i|}{\sigma_n} > \epsilon\right)$$

$$= P\left(\bigcup_{i=1}^n A_i\right)$$

$$\leq \sum_{i=1}^n P(A_i)$$

$$\leq \frac{1}{\epsilon^2 \sigma_n^2} \sum_{i=1}^n \int_{|X_i - \mu_i| > \sigma_n \epsilon} (x - \mu_i)^2 dF_{X_i}(x) \xrightarrow{n \to \infty} 0$$

Zentraler Grenzwertsatz

Satz (Zentraler Grenzwertsatz)

 $(X_n)_{n\in\mathbb{N}}$ sei eine Folge unabhängiger Zufallsvarablen mit $\sigma_n^2<\infty$, die der Lindeberg-Bedingung genügt. Dann konvergiert die Folge der Verteilungen der standardisierten Summen

$$S_n = \frac{1}{\tau_n} \sum_{j=1}^n (X_j - \mu_j)$$

in Verteilung gegen die N(0,1)-Verteilung: $P^{S_n} \xrightarrow{d} N(0,1)$

Einleitung Lindeberg-Bedingung Interpretation Zentraler Grenzwertsatz

Vielen Dank für die Aufmerksamkeit!