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If                              for every bounded, continuous real function           

on S,  we write 
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    In measure theory, there are various notions of the convergence of 

measures. Broadly speaking, there are two kinds of convergence, strong 

convergence and weak convergence.  

   strong convergence: If the collection of all measures on a 

measurable space can be given some kind of metric, then convergence in 

this metric is usually referred to as strong convergence. 

   weak convergence:    

 S    metric space                 class of Borel sets in S       P  probability measure on   
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   Every probability measure on (S ,    )  is regular; that is, 

      if              and      > 0, then there exist a closed set F and an open set  G such      

      that                      and                        .   
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Measures and Integrals 

φ

A φ

F A G ( )P G F

    Probability measures P and Q on (S ,     ) coincide if    

                                                                      for each f in C(S). f dP f dQ

φ

    If F is closed and    positive, there is a function f in C(S) s.t.  

                     if           ,                 if                   , and                      for all    . 

       The function f may be taken to be uniformly continuous. 

( ) 1f x x F ( ) 0f x ( , )x F 0 ( ) 1f x x
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Portmanteau Theorem 

Let     , P be probability measures on                . These five conditions are 

equivalent: 

        (i)  

       (ii)                                  for all bounded, uniformly continuous real f. 

      (iii)                                         for all closed F.   

      (ⅳ)                                       for all open G. 

        (v)                                  for all P-continuity sets A. 

(S ,    ) φ
nP

.nP P

limn nfdP fdP

limsup ( ) ( )n nP F P F

liminf ( ) ( )n nP G P G

lim ( ) ( )n nP A P A
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Other Criteria 

    Let     be a class of sets s.t. 

       (i)      is closed under the formation of finite intersections; 

      (ii)  each open set in S is a finite or countable union of elements of  

       If                         for every A in     , then  

 

  Corollary: 

      Let     be a class of sets s.t. 

      (i)      is closed under the formation of finite intersections; 

      (ii)  for every    in S and every positive     there is an A in     with            

                                                           

      If  S is separable and if                         for every A in    ,then  

 

U

U

x U

U

( ) ( )nP A P A U .nP P

U
U

int( ) ( , ).x A A S x

( ) ( )nP A P A U .nP P



www.kingor.com.cn LOGO 

8 

Weak Convergence | 25. May  2010 

Other Criteria 

 Corollary:  

    Suppose that, for each finite intersection A of open spheres, we have 

                           , provided A is a P-continuity set. If S is separable, then 

     

 

  Another condition for weak convergence:   

     We have                if and only if each subsequence          contains a    

     further subsequence          s.t.   

( ) ( )nP A P A

.nP P

nP P '{ }nP

''{ }nP
'' .nP P
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Euclidean Space 

 

 
    We can relate weak convergence                to the usual notion of convergence for 

the corresponding distribution functions       , F. 

                 k-dimensional Euclidean space 

                    ordinary metric which equals  

                    the class of  Borel sets 

 

     The general probability measure P on                      has a distribution function F: 

 

     For distribution functions       and F, define                 to mean that               

                                   at continuity points    of F. 

    We can prove that if             ,  then  

nP P

nF

KR

( , )x y 2

1
| | ( )

k

i ii
x y x y

KR

,K KR（ ）R

( ) { : }, .KF x P y y x x R

nF nF F

( ) ( )nF x F x x

nP P nF F
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The Circle 

    S is the unit circle in the complex plane. 

                  if and only if                           for every arc A whose endpoints have P-

measure 0.     
nP P ( ) ( )nP A P A
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Random Elements 

    X is a mapping from a probability space                    into a metric space S.    

       If X is measurable, we call it a random element.    

( , , )B P

    The distribution of X is the probability measure P on                 : 

 

     Note that       is a probability measure on a space of an arbitrary nature, 

whereas P is always defined on a metric space. For many questions, the 

distribution P contains all relevant information about the random element X. 

     If h is a measurable function on S, then by change-of-variable formula  

 

        In the usual expected-value notation, 

  

       

(S ,    ) φ
1( ) ( ) ( : ( ) ) ( )P A X A X A X AP P P

P

( )h X d hdPP=

E[ ( )]hdP h X
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Convergence in Distribution 

  A sequence          of random elements converges in distribution to the random 

element X:                     , if the distributions       of the      converge weakly to the 

distribution P of X:              . 

  The underlying probability spaces (the domains) may be all distinct. 

  Each theorem about weak convergence can be similarly recast. 

nX XD

{ }nX

nP
nX

nP P



www.kingor.com.cn LOGO 

15 

Weak Convergence | 25. May  2010 

Convergence in Distribution 

(i)  

(ii)                                              for all bounded, uniformly continuous real f. 

(iii)                                                       for all closed F. 

(iv)                                                    for all open G. 

(v)                                              for all X-continuity sets A. 

 

   

nX XD

lim E[ ( )] E[ ( )]n nf X f X

limsup ( ) ( )n nX F X FP P

liminf ( ) ( )n nG F X GP P

lim ( ) ( )n nX A P X AP
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Convergence in Distribution 

  Hybrid terminology: 

     We say the       converge in distribution to P, and write 

                 

      in case                 . 

 

  It is great convenience to be able to pass from one to another of three equivalent 

concepts. This is largely a matter of expedient phraseology. 

 Example:   

 

nX

,nX PD

nP P

2( , ).nX ND
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Convergence in Probability 

    If, for an element a of S,  

                

for each positive   , we say        converges in probability to a and write  

 

    If a is conceived as a constant-valued random element, then  

                              if and only if                           . 

   Alternatively,                       if and only if the distribution of           

converges weakly to the probability measure corresponding to a mass 

of 1 at the point a. 

 

 

{ ( , ) } 0nX aP

nX

.nX aP

nX aP

nX aD

nX aP
nX
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Convergence in Probability 

    If, for an element a of S,  

                

for each positive   , we say        converges in probability to a and write  

 

    If a is conceived as a constant-valued random element, then  

                              if and only if                           . 

   Alternatively,                       if and only if the distribution of           

converges weakly to the probability measure corresponding to a mass 

of 1 at the point a. 

 

 

{ ( , ) } 0nX aP

nX

.nX aP

nX aP

nX aD

nX aP
nX
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Continuous Mappings 

 

  
    h is a measurable mapping :              , then each probability measure    

P on             induces on                 a unique probability measure   

           

    If h is a continuous mapping,                 implies   

'S S
( , )S φ ( ', )'S φ 1Ph

1 1( ) ( ),Ph A P h A A φ'

nP P 1 1.nP h Ph
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Main Theorem 

   

 

  

    We can weaken the continuity assumption of h. 

    Assume only h is measurable and let        be the set of discontinuities 

of h. Then we can prove           

    If               and                    then  

hD

hD φ.

nP P ( ) 0hP D ，
1 1.nP h Ph
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                      are independent random variables with mean 0 and finite 

variance         . The probability space on which the variables are defined 

may vary with n. 

1,...,
nn nk

2

nk

                               and suppose its variance                                   is positive. 

  N is a random variable normally distributed with mean 0 and variance 1. 

  Lindeberg’s theorem: 

     If    

 

1 ...
nn n nkS 2 2 2

1 ...
nn n nks

2

2 {| | }
1

1
0( )

n

nk n

k

nk
s

kn

d n
s

P

    for each positive        , then   

.n

n

S
N

s
D
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    From the last theorem we can deduce the lindeberg-Levy theorem: 

       If                  are independent and identical distributed with mean 0   

and  finite variance             then 

1 2, ,...
2 0,

1

1
.

n

k

k

N
n

D

    To prove this result, take                            the sum in former equation 

is at most            integrated over  

, ;n ni ik n
2 2

1 1{| | }.n
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   A central limit theorem is any of a set of weak-convergence theories. 

They all express the fact that a sum of many independent random variables 

will tend to be distributed according to one of a small set of "attractor" (i.e. 

stable) distributions.  

    the central limit theorem states conditions under which the mean of a 

sufficiently large number of independent random variables, each with 

finite mean and variance, will be approximately normally distributed  
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   The de Moivre–Laplace theorem is a normal approximation to the 

binomial distribution. It is a special case of the central limit theorem. It states 

that the binomial distribution of the number of "successes" in n independent 

trials with probability p of success on each trial is approximately a normal 

distribution with mean np and standard deviation , if n is very large and some 

conditions are satisfied.  
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,n nX X Y cD P
Given                                    , where c is a constant, then 

 

 

 

 

;n nX Y X cD

;n nX Y cXD

1 1 .n nY X c XD

The theorem remains valid if we replace all convergences in 

distribution with convergences in probability  

 



Thank You! 


