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Random elements

Let (2, A, P) be a probability space, Q # (0, and (S, B) be a
measurable space constructed upon an abstract set S # ()

A random element ¢ : Q — Sis an A|B -measurable mapping of (2, .4)
into (S, B), i.e

B ={weQ:fw)eBle A

for all B € B. We write ¢ € A|B.
Example: coin throw
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Random elements

@ The distribution of a random element ¢ : Q — S is a probability
measure P defined on the measurable space (S, B) by

P:{B} = P{¢"'(B)},B e B.
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Random function

@ Let T be an abstract index space and (S, ) a measurable space.
A family ¢ = {¢(t),t € T} of random elements £(f) : Q@ — S
defined on a probability space (2, A, P) is called random function.

Example: coin throw
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Random function

Forne Nand ty,...,t, € T we call the distribution of random vector
(£(t), ..., &(tr)) " a finite-dimensional distribution of the random
function £ = {{(t),t € T}. We write

Pt..t:ABt;, -, B} = P{&(t) € By, ..., &(tn) € Bt}

where By, € By ,k=1,....n
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Random function

Foralln>2,t,...,the T,By € Ey,k =1,...,nand all arbitrary

permutations (i1, ...,In) of (1,...,n), then it has the following
properties:

@ Symmetry:

Pt1,...,tn{Bt1 X ... X Btn} = Pt;1 7~--’tin{Bti1 PR Bfin}
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Theorem:(A.N.Kolmogorov,1933)

Let(E;, €)1 be a family of Borel spaces. For any n € N and

ti,....th € T,i # j, let measures Py, be given on spaces

(Et,....tn» E1,...1,) SUCh that they satisfy the conditions of symmetry and
consistency. Then there exist a probability space (22, .4, P) and a
random function £ = {¢(t), t € T} defined on it such that its
finite-dimensional distributions coincide with measures P, ..
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White noise

A random function £ = {£(t),t € T} defined on (Q, A, P) is called white
noise, if £ = {{(t),t € T} are independent and identically distributed.

@ salt-and-pepper noise (£(t) ~ Ber(p),t € T) for binary images.
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White noise
Salt and pepper noise is a form of noise typically seen on images. It
represents itself as randomly occurring white and black pixels.

‘ J

Figure: The original image and the image with salt and pepper noise.
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White noise

Figure: An example realization of a Gaussian white noise process.
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Gaussian random function

The random function £ = {{(t),t € T} is called Gaussian if all its
finite-dimensional distributions Py, ;, are Gaussian, which means the
distribution of random vector &, 1 = (&(t1),...,£(th)) T isan
n-dimensional normal distribution with expectation

fity oty = ((tr), s ()"

and covariance matrix

Tty,.tn = (COV(E(H), £(8))) =1 :

i.e.
Etrrosta ~ Nty o Tty 1)
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Gaussian random function

Figure: Paper surface (left) and simulated Gaussian random field (right)
based on the estimated data.
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Lognormal fields

The random function £ = {{(t),t € T} is called lognormal if
£(t) = e, where n = {(t), t € T} is a Gaussian random field.

Figure: Contour maps and surface plots of a lognormal random field
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y2-fields

The random function ¢ = {¢(t), t € R} is called x2-field if

£(t) = |In(t)|3,t € RY, where n = {(t), t € R} is an n-dimensional
vector-valued random field such that n(t) ~ N(0, /). | denotes the
identity matrix. It is clear that £(t) is x2-distributed for all t € RC.
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Cosine fields

Let » be a random variable, ¢ a random vector, dim¢ = dimT where 7
and ¢ are independent.

Consider a random field ¢ = {¢(t),t € R}, d > 1 defined by

£(t) = vV2cos(2m + (t,n))

For instance, n(t) ~ U|0, 1], each realization of £ is a cosine wave
surface.
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Cosine fields

Figure: A realization of cosine field
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Shot noise random fields

Let My = x;, i € N be a homogeneous Poisson point process with
intensity A > 0. Let g : RY — R be a deterministic function, for which
Jre 9(x)dx < 0o and [zs g(x)?dx < oo hold. If & = £(t),t € RY by

£(t) = Txen, 9(t — x),t € RY , then ¢ is called a shot-noise field and g
is called response function.

Ying Zhang () Random Fields July 12th, 2010 18/24



Figure: Shot-noise random field (left), Gaussian white noise (middle),
Gaussian random field (right).
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Construction of shot noise random fields

The response functions can be constructed as follows: take

g(x) = K(||x||2/a), where ||x||2 is the Euclidean norm and K is called
kernel which is the probability density function with compact support
K=xecR: K(x)>0.

Formally, a shot-noise field can be written as a stochastic integral

£(t) = [ga 9(t — x)Mx(dx) if My(-) is interpreted as a random Poisson
counting measure.
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Moments and covariance

The mixed moment Ut (ty, ... t,) of & of orders jy,.

..,Jn € Nat
index values ty,...,t, € T is defined by:
plvsi) (b)) = E{€r () - ... €' (tn)}
For special cases:
o u(t) = () = E{¢(t)}
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Ying Zhang () Random Fields July 12th, 2010 21/24



Moments and covariance

The mixed moment Ut (ty, ... t,) of & of orders jy,.

..,Jn € Nat
index values ty,...,t, € T is defined by:
plvsi) (b)) = E{€r () - ... €' (tn)}
For special cases:
o u(t) = () = E{¢(t)}
o (M1(s, t) = E{¢(s)&(1)}
uulm

Ying Zhang () Random Fields July 12th, 2010 21/24



Moments and covariance

The mixed moment Ut (ty, ... t,) of & of orders jy,.

..,Jn € Nat
index values ty,...,t, € T is defined by:

pUr Ity ) = E{ER () - - R (t)

For special cases:
o u(t) = puN(t) = E{¢(t)}
o (M1(s, t) = E{¢(s)&(1)}
)

o C(s,t) = Cov(&(s). £(1)) = n1(s,1) — u(8)u(t)

N
L

uulm

Ying Zhang () Random Fields July 12th, 2010 21/24



Moments and covariance

The mixed moment Ut (ty, ... t,) of & of orders jy,.

..,Jn € Nat
index values ty,...,t, € T is defined by:

pUr Ity ) = E{ER () - - R (t)

For special cases:
o u(t) = puN(t) = E{¢(t)}
o (M1(s, t) = E{¢(s)&(1)}
)

o C(s,t) = Cov(&(s). £(1)) = n1(s,1) — u(8)u(t)

N
L

uulm

Ying Zhang () Random Fields July 12th, 2010 21/24



Stationarity

@ stationarity in strict sense : The random function ¢ = {£(t),t € T}
is called (strictly) stationary ifforany ne N, 7, t4,..., I, € T it

holds Pt 4+ t,+r = P41, i.€. all finite-dimensional distribution
of ¢ are invariant with respect to shifts in T.
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Isotropy

The random function ¢ = {£(t), t € R} is said to be isotropic
@ in the strict sense, ifforany ne N, t,...,t, € RY A € SO(d):

(E(At). . E(AL)) T 2 (E(t), -, E(ta) T
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Thanks for your attention!
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