Random Fields

Ying Zhang

July 12th, 2010

Ying Zhang ()

Random Fields

July 12th, 2010 1 / 24

Table of contents

Definition

- Random Elements
- Random Functions

Elementary examples

- White noise
- Gaussian random function
- Lognormal fields
- χ^2 fields
- Cosine fields
- Shot noise random fields

More aspects about random functions

- Moments and covariance
- Stationarity and isotropy

Let (Ω, \mathcal{A}, P) be a probability space, $\Omega \neq \emptyset$, and (S, \mathcal{B}) be a measurable space constructed upon an abstract set $S \neq \emptyset$ A random element $\xi : \Omega \to S$ is an $\mathcal{A}|\mathcal{B}$ -measurable mapping of (Ω, \mathcal{A}) into (S, \mathcal{B}) , i.e

$$\xi^{-1}(B) := \{\omega \in \Omega : \xi(\omega) \in B\} \in \mathcal{A}$$

for all $B \in \mathcal{B}$. We write $\xi \in \mathcal{A}|\mathcal{B}$. Example: coin throw

イロト イポト イラト イラト

 The distribution of a random element ξ : Ω → S is a probability measure P_ξ defined on the measurable space (S, B) by

$$P_{\xi}\{B\} = P\{\xi^{-1}(B)\}, B \in \mathcal{B}.$$

 Lemma: Any probability measure μ on (S, B) can be considered as a distribution of some random element ξ.

Ying Zhang ()

 The distribution of a random element ξ : Ω → S is a probability measure P_ξ defined on the measurable space (S, B) by

$$P_{\xi}\{B\} = P\{\xi^{-1}(B)\}, B \in \mathcal{B}.$$

 Lemma: Any probability measure μ on (S, B) can be considered as a distribution of some random element ξ.

Random Fields

Image: A matrix a

Ying Zhang ()

 The distribution of a random element ξ : Ω → S is a probability measure P_ξ defined on the measurable space (S, B) by

$$P_{\xi}\{B\} = P\{\xi^{-1}(B)\}, B \in \mathcal{B}.$$

 Lemma: Any probability measure μ on (S, B) can be considered as a distribution of some random element ξ.

Random Fields

Image: A matrix a

- Let T be an abstract index space and (S, B) a measurable space.
 A family ξ = {ξ(t), t ∈ T} of random elements ξ(t) : Ω → S
 defined on a probability space (Ω, A, P) is called random function.
- ξ = ξ(ω, t) is a mapping of Ω × T onto S, which is A|B-measurable for each t ∈ T.

Example: coin throw

- Let T be an abstract index space and (S, B) a measurable space.
 A family ξ = {ξ(t), t ∈ T} of random elements ξ(t) : Ω → S
 defined on a probability space (Ω, A, P) is called random function.
- $\xi = \xi(\omega, t)$ is a mapping of $\Omega \times T$ onto S, which is $\mathcal{A}|\mathcal{B}$ -measurable for each $t \in T$.

Example: coin throw

A 30 b

- Let T be an abstract index space and (S, B) a measurable space.
 A family ξ = {ξ(t), t ∈ T} of random elements ξ(t) : Ω → S
 defined on a probability space (Ω, A, P) is called random function.
- $\xi = \xi(\omega, t)$ is a mapping of $\Omega \times T$ onto S, which is $\mathcal{A}|\mathcal{B}$ -measurable for each $t \in T$.

Example: coin throw

A 30 b

For $n \in N$ and $t_1, \ldots, t_n \in T$ we call the distribution of random vector $(\xi(t_1), \ldots, \xi(t_n))^\top$ a finite-dimensional distribution of the random function $\xi = \{\xi(t), t \in T\}$. We write

$$P_{t_1,...,t_n} \{ B_{t_1}, \ldots, B_{t_n} \} = P\{\xi(t_1) \in B_{t_1}, \ldots, \xi(t_n) \in B_{t_n} \}$$

 $B_{t_k} \in \mathcal{B}_{t_k}, k = 1, \ldots, n$

where

-

For all $n \ge 2$, $t_1, \ldots, t_n \in T$, $B_{t_k} \in E_{t_k}$, $k = 1, \ldots, n$ and all arbitrary permutations (i_1, \ldots, i_n) of $(1, \ldots, n)$, then it has the following properties:

• Symmetry:

$$P_{t_1,...,t_n}\{B_{t_1} \times \ldots \times B_{t_n}\} = P_{t_{i_1},...,t_{i_n}}\{B_{t_{i_1}},\ldots,B_{t_{i_n}}\}$$

• Consistency:

 $P_{t_1,...,t_n} \{ B_{t_1} \times ... \times B_{t_{n-1}} \times E_{t_n} \} = P_{t_1,...,t_{n-1}} \{ B_{t_1},..., B_{t_{n-1}} \}$ since $\{ \xi(t_n) \in E_{t_n} \} = \Omega$

July 12th, 2010 7 / 24

イロン 不得 とくき とくき とうせい

For all $n \ge 2$, $t_1, \ldots, t_n \in T$, $B_{t_k} \in E_{t_k}$, $k = 1, \ldots, n$ and all arbitrary permutations (i_1, \ldots, i_n) of $(1, \ldots, n)$, then it has the following properties:

• Symmetry:

$$P_{t_1,...,t_n}\{B_{t_1} \times \ldots \times B_{t_n}\} = P_{t_{i_1},...,t_{i_n}}\{B_{t_{i_1}},\ldots,B_{t_{i_n}}\}$$

• Consistency:

$$P_{t_1,...,t_n} \{ B_{t_1} \times ... \times B_{t_{n-1}} \times E_{t_n} \} = P_{t_1,...,t_{n-1}} \{ B_{t_1},..., B_{t_{n-1}} \}$$

since $\{ \xi(t_n) \in E_{t_n} \} = \Omega$

For all $n \ge 2$, $t_1, \ldots, t_n \in T$, $B_{t_k} \in E_{t_k}$, $k = 1, \ldots, n$ and all arbitrary permutations (i_1, \ldots, i_n) of $(1, \ldots, n)$, then it has the following properties:

• Symmetry:

$$P_{t_1,...,t_n}\{B_{t_1} \times \ldots \times B_{t_n}\} = P_{t_{i_1},...,t_{i_n}}\{B_{t_{i_1}},\ldots,B_{t_{i_n}}\}$$

• Consistency:

$$P_{t_1,...,t_n} \{ B_{t_1} \times ... \times B_{t_{n-1}} \times E_{t_n} \} = P_{t_1,...,t_{n-1}} \{ B_{t_1},..., B_{t_{n-1}} \}$$

since $\{ \xi(t_n) \in E_{t_n} \} = \Omega$

Theorem:(A.N.Kolmogorov,1933)

Let $(E_t, \mathcal{E})_{t \in T}$ be a family of Borel spaces. For any $n \in \mathbb{N}$ and $t_1, \ldots, t_n \in T, i \neq j$, let measures P_{t_1,\ldots,t_n} be given on spaces $(E_{t_1,\ldots,t_n}, \mathcal{E}_{t_1,\ldots,t_n})$ such that they satisfy the conditions of symmetry and consistency. Then there exist a probability space (Ω, \mathcal{A}, P) and a random function $\xi = \{\xi(t), t \in T\}$ defined on it such that its finite-dimensional distributions coincide with measures P_{t_1,\ldots,t_n} .

イロト イポト イラト イラト

A random function $\xi = \{\xi(t), t \in T\}$ defined on (Ω, \mathcal{A}, P) is called white noise, if $\xi = \{\xi(t), t \in T\}$ are independent and identically distributed.

- salt-and-pepper noise $(\xi(t) \sim Ber(p), t \in T)$ for binary images.
- Gaussian white noise (ξ(t) ~ N(0, σ²), σ² > 0) for greyscale images.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

A random function $\xi = \{\xi(t), t \in T\}$ defined on (Ω, \mathcal{A}, P) is called white noise, if $\xi = \{\xi(t), t \in T\}$ are independent and identically distributed.

- salt-and-pepper noise $(\xi(t) \sim Ber(p), t \in T)$ for binary images.
- Gaussian white noise (ξ(t) ~ N(0, σ²), σ² > 0) for greyscale images.

イロト イポト イラト イラト

A random function $\xi = \{\xi(t), t \in T\}$ defined on (Ω, \mathcal{A}, P) is called white noise, if $\xi = \{\xi(t), t \in T\}$ are independent and identically distributed.

- salt-and-pepper noise $(\xi(t) \sim Ber(p), t \in T)$ for binary images.
- Gaussian white noise (ξ(t) ~ N(0, σ²), σ² > 0) for greyscale images.

イロト イポト イラト イラト

Salt and pepper noise is a form of noise typically seen on images. It represents itself as randomly occurring white and black pixels.

Figure: The original image and the image with salt and pepper noise \mathbf{U}

Ying Zhang ()

Random Fields

4 AR 1 4 B 1

Figure: An example realization of a Gaussian white noise process.

Ying Zhang ()

Random Fields

July 12th, 2010 11 / 24

Gaussian random function

The random function $\xi = \{\xi(t), t \in T\}$ is called Gaussian if all its finite-dimensional distributions $P_{t_1,...,t_n}$ are Gaussian, which means the distribution of random vector $\xi_{t_1,...,t_n} = (\xi(t_1),...,\xi(t_n))^{\top}$ is an n-dimensional normal distribution with expectation

$$\mu_{t_1,\ldots,t_n}=(\mu(t_1),\ldots,\mu(t_n))^\top$$

and covariance matrix

$$\Sigma_{t_1,...,t_n} = (cov(\xi(t_i),\xi(t_j)))_{i,j=1}^n$$
:

i.e.

$$\xi_{t_1,\ldots,t_n} \sim \mathcal{N}(\mu_{t_1,\ldots,t_n}, \Sigma_{t_1,\ldots,t_n})$$

Gaussian random function

イロト イポト イヨト イヨト

Figure: Paper surface (left) and simulated Gaussian random field (right) based on the estimated data.

Lognormal fields

The random function $\xi = \{\xi(t), t \in T\}$ is called lognormal if $\xi(t) = e^{\eta(t)}$, where $\eta = \{\eta(t), t \in T\}$ is a Gaussian random field.

Figure: Contour maps and surface plots of a lognormal random field

χ^2 -fields

The random function $\xi = \{\xi(t), t \in \mathbb{R}^d\}$ is called χ^2 -field if $\xi(t) = ||\eta(t)||_2^2, t \in \mathbb{R}^d$, where $\eta = \{\eta(t), t \in \mathbb{R}^d\}$ is an n-dimensional vector-valued random field such that $\eta(t) \sim N(0, I)$. I denotes the identity matrix. It is clear that $\xi(t)$ is χ_p^2 -distributed for all $t \in \mathbb{R}^d$.

Cosine fields

Let η be a random variable, ζ a random vector, $dim\zeta = dimT$ where η and ζ are independent.

Consider a random field $\xi = \{\xi(t), t \in \mathbb{R}^d\}, d \ge 1$ defined by $\xi(t) = \sqrt{2}\cos(2\pi\eta + \langle t, \eta \rangle)$

For instance, $\eta(t) \sim U[0, 1]$, each realization of ξ is a cosine wave surface.

A 3 3 5

Cosine fields

Figure: A realization of cosine field

Ying Zhang ()

Random Fields

July 12th, 2010 17 / 24

Shot noise random fields

Let $\Pi_{\lambda} = x_i, i \in \mathbb{N}$ be a homogeneous Poisson point process with intensity $\lambda > 0$. Let $g : \mathbb{R}^d \to \mathbb{R}$ be a deterministic function, for which $\int_{\mathbb{R}^d} g(x) dx < \infty$ and $\int_{\mathbb{R}^d} g(x)^2 dx < \infty$ hold. If $\xi = \xi(t), t \in \mathbb{R}^d$ by $\xi(t) = \sum_{x \in \Pi_{\lambda}} g(t - x), t \in \mathbb{R}^d$, then ξ is called a shot-noise field and g is called response function.

July 12th. 2010

18/24

Figure: Shot-noise random field (left), Gaussian white noise (middle), Gaussian random field (right).

Construction of shot noise random fields

The response functions can be constructed as follows: take $g(x) = K(||x||_2/a)$, where $||x||_2$ is the Euclidean norm and K is called kernel which is the probability density function with compact support $K = x \in \mathbb{R}^d$: K(x) > 0.

Formally, a shot-noise field can be written as a stochastic integral $\xi(t) = \int_{R^d} g(t-x) \Pi_{\lambda}(dx)$ if $\Pi_{\lambda}(\cdot)$ is interpreted as a random Poisson counting measure.

The mixed moment $\mu^{(j_1,\ldots,j_n)}(t_1,\ldots,t_n)$ of ξ of orders $j_1,\ldots,j_n \in \mathbb{N}$ at index values $t_1,\ldots,t_n \in T$ is defined by:

$$\mu^{(j_1,...,j_n)}(t_1,...,t_n) = E\{\xi^{j_1}(t_1)\cdot\ldots\cdot\xi^{j_1}(t_n)\}$$

For special cases:

- $\mu(t) = \mu^{(1)}(t) = E\{\xi(t)\}$
- $\mu^{(1,1)}(s,t) = E\{\xi(s)\xi(t)\}$
- $C(s,t) = Cov(\xi(s),\xi(t)) = \mu^{(1,1)}(s,t) \mu^{(1)}(s)\mu^{(1)}(t)$

July 12th, 2010

21/24

The mixed moment $\mu^{(j_1,\ldots,j_n)}(t_1,\ldots,t_n)$ of ξ of orders $j_1,\ldots,j_n \in \mathbb{N}$ at index values $t_1,\ldots,t_n \in T$ is defined by:

$$\mu^{(j_1,...,j_n)}(t_1,...,t_n) = E\{\xi^{j_1}(t_1)\cdot\ldots\cdot\xi^{j_1}(t_n)\}$$

For special cases:

- $\mu(t) = \mu^{(1)}(t) = E\{\xi(t)\}$
- $\mu^{(1,1)}(s,t) = E\{\xi(s)\xi(t)\}$

• $C(s,t) = Cov(\xi(s),\xi(t)) = \mu^{(1,1)}(s,t) - \mu^{(1)}(s)\mu^{(1)}(t)$

ulu university universitàt ulu university universitàt

The mixed moment $\mu^{(j_1,\ldots,j_n)}(t_1,\ldots,t_n)$ of ξ of orders $j_1,\ldots,j_n \in \mathbb{N}$ at index values $t_1,\ldots,t_n \in T$ is defined by:

$$\mu^{(j_1,...,j_n)}(t_1,...,t_n) = E\{\xi^{j_1}(t_1)\cdot\ldots\cdot\xi^{j_1}(t_n)\}$$

For special cases:

•
$$\mu(t) = \mu^{(1)}(t) = E\{\xi(t)\}$$

• $\mu^{(1,1)}(s,t) = E\{\xi(s)\xi(t)\}$
• $C(s,t) = Cov(\xi(s),\xi(t)) = \mu^{(1,1)}(s,t) - \mu^{(1)}(s)\mu^{(1)}(t)$

イロト イポト イヨト イヨト

ulm university universit

э.

The mixed moment $\mu^{(j_1,\ldots,j_n)}(t_1,\ldots,t_n)$ of ξ of orders $j_1,\ldots,j_n \in \mathbb{N}$ at index values $t_1,\ldots,t_n \in T$ is defined by:

$$\mu^{(j_1,...,j_n)}(t_1,...,t_n) = E\{\xi^{j_1}(t_1)\cdot\ldots\cdot\xi^{j_1}(t_n)\}$$

For special cases:

•
$$\mu(t) = \mu^{(1)}(t) = E\{\xi(t)\}$$

• $\mu^{(1,1)}(s,t) = E\{\xi(s)\xi(t)\}$
• $C(s,t) = Cov(\xi(s),\xi(t)) = \mu^{(1,1)}(s,t) - \mu^{(1)}(s)\mu^{(1)}(t)$

イロト イポト イヨト イヨト

ulm university universit

э.

- stationarity in strict sense : The random function ξ = {ξ(t), t ∈ T} is called (strictly) stationary if for any n ∈ N, τ, t₁,..., t_n ∈ T it holds P_{t1+τ},...,t_{n+τ} = P_{t1},...,t_n, i.e. all finite-dimensional distribution of ξ are invariant with respect to shifts in T.
- stationarity in the wide sense: $\xi = \{\xi(t), t \in T\}$ is a random function with $E|\xi(t)|^2 < \infty, t \in T$. ξ is called stationarity in wide sense if $\mu(t) \equiv \mu$ and $C(s, t) = C(s + \tau, t + \tau)(:= C(s t)), \tau, s, t \in T$.
- Both definitions of stationarity do not imply each other.

э.

- stationarity in strict sense : The random function ξ = {ξ(t), t ∈ T} is called (strictly) stationary if for any n ∈ N, τ, t₁,..., t_n ∈ T it holds P_{t1+τ},...,t_{n+τ} = P_{t1},...,t_n, i.e. all finite-dimensional distribution of ξ are invariant with respect to shifts in T.
- stationarity in the wide sense: ξ = {ξ(t), t ∈ T} is a random function with E|ξ(t)|² < ∞, t ∈ T. ξ is called stationarity in wide sense if μ(t) ≡ μ and C(s, t) = C(s + τ, t + τ)(:= C(s t)), τ, s, t ∈ T.
- Both definitions of stationarity do not imply each other.

-

- stationarity in strict sense : The random function ξ = {ξ(t), t ∈ T} is called (strictly) stationary if for any n ∈ N, τ, t₁,..., t_n ∈ T it holds P_{t1+τ},...,t_{n+τ} = P_{t1},...,t_n, i.e. all finite-dimensional distribution of ξ are invariant with respect to shifts in T.
- stationarity in the wide sense: ξ = {ξ(t), t ∈ T} is a random function with E|ξ(t)|² < ∞, t ∈ T. ξ is called stationarity in wide sense if μ(t) ≡ μ and C(s, t) = C(s + τ, t + τ)(:= C(s t)), τ, s, t ∈ T.
- Both definitions of stationarity do not imply each other.

-

- stationarity in strict sense : The random function ξ = {ξ(t), t ∈ T} is called (strictly) stationary if for any n ∈ N, τ, t₁,..., t_n ∈ T it holds P_{t1+τ},...,t_{n+τ} = P_{t1},...,t_n, i.e. all finite-dimensional distribution of ξ are invariant with respect to shifts in T.
- stationarity in the wide sense: ξ = {ξ(t), t ∈ T} is a random function with E|ξ(t)|² < ∞, t ∈ T. ξ is called stationarity in wide sense if μ(t) ≡ μ and C(s, t) = C(s + τ, t + τ)(:= C(s t)), τ, s, t ∈ T.
- Both definitions of stationarity do not imply each other.

-

The random function $\xi = \{\xi(t), t \in \mathbb{R}^d\}$ is said to be isotropic • in the strict sense, if for any $n \in \mathbb{N}, t_1, \dots, t_n \in \mathbb{R}^d, A \in SO(d)$:

$$(\xi(At_1),\ldots,\xi(At_n))^{\top} \stackrel{d}{=} (\xi(t_1),\ldots,\xi(t_n))^{\top}.$$

• in the wide sense, if for any $s, t \in \mathbb{R}^d, A \in SO(d)$:

$$\mu(At) = \mu(t), C(As, At) = C(s, t).$$

• The random field ξ is motion invariant if it is stationary and isotropic.

The random function $\xi = \{\xi(t), t \in \mathbb{R}^d\}$ is said to be isotropic • in the strict sense, if for any $n \in \mathbb{N}, t_1, \dots, t_n \in \mathbb{R}^d, A \in SO(d)$:

$$(\xi(\mathbf{A}t_1),\ldots,\xi(\mathbf{A}t_n))^{\top} \stackrel{d}{=} (\xi(t_1),\ldots,\xi(t_n))^{\top}.$$

• in the wide sense, if for any $s, t \in \mathbb{R}^d, A \in SO(d)$:

$$\mu(At) = \mu(t), C(As, At) = C(s, t).$$

• The random field ξ is motion invariant if it is stationary and isotropic.

The random function $\xi = \{\xi(t), t \in \mathbb{R}^d\}$ is said to be isotropic • in the strict sense, if for any $n \in \mathbb{N}, t_1, \dots, t_n \in \mathbb{R}^d, A \in SO(d)$:

$$(\xi(\mathbf{A}t_1),\ldots,\xi(\mathbf{A}t_n))^{\top} \stackrel{d}{=} (\xi(t_1),\ldots,\xi(t_n))^{\top}.$$

• in the wide sense, if for any $s, t \in \mathbb{R}^d, A \in SO(d)$:

$$\mu(At) = \mu(t), C(As, At) = C(s, t).$$

 The random field ξ is motion invariant if it is stationary and isotropic.

A 30 b

The random function $\xi = \{\xi(t), t \in \mathbb{R}^d\}$ is said to be isotropic • in the strict sense, if for any $n \in \mathbb{N}, t_1, \dots, t_n \in \mathbb{R}^d, A \in SO(d)$:

$$(\xi(\mathbf{A}t_1),\ldots,\xi(\mathbf{A}t_n))^{\top} \stackrel{d}{=} (\xi(t_1),\ldots,\xi(t_n))^{\top}.$$

• in the wide sense, if for any $s, t \in \mathbb{R}^d, A \in SO(d)$:

$$\mu(At) = \mu(t), C(As, At) = C(s, t).$$

 The random field ξ is motion invariant if it is stationary and isotropic.

A 30 b

Thanks for your attention!

Ying Zhang ()

Random Fields

July 12th, 2010 24 / 24