Let $\left(Y_{n}\right)_{n \geq 1}$ iid uniform on $\{1, \ldots, 6\}$ (result of n-th throw). Furthermore define recursively

$$
\begin{gathered}
X_{n+1}^{\prime}=X_{n}^{\prime} \cup\left\{Y_{n+1}\right\} \\
X_{0}=\emptyset
\end{gathered}
$$

That is, X_{n}^{\prime} denotes the set of observed numbers at time n. In particular, we have $X_{n}=\left|X_{n}^{\prime}\right|$. For $i_{0}, \ldots, i_{n+1} \in\{0, \ldots, 6\}$ with $\mathbb{P}\left(X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right)>0$ we obtain

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right) \\
= & \frac{P\left(X_{n+1}=i_{n+1}, X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right)}{\mathbb{P}\left(X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right)} \\
= & \sum_{\substack{A \subset\{1, \ldots, 6\} \\
|A|=i_{n}}} \sum_{b \in\{1, \ldots, 6\}} \frac{\mathbb{P}\left(X_{n}^{\prime}=A, Y_{n+1}=b,|A \cup\{b\}|=i_{n+1}, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)}{\mathbb{P}\left(X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right)} \\
= & \sum_{\substack{A \subset\{1, \ldots, 6\} \\
|A|=i_{n}}} \sum_{b \in\{1, \ldots, 6\}} \frac{\mathbb{P}\left(Y_{n+1}=b,|A \cup\{b\}|=i_{n+1}\right) \mathbb{P}\left(X_{n}^{\prime}=A, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)}{\mathbb{P}\left(X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right)} \\
= & \sum_{\substack{A \subset\{1, \ldots, 6\} \\
|A|=i_{n}}} \frac{\left(1_{i_{n+1}=i_{n}} \frac{|A|}{6}+1_{i_{n+1}=i_{n}+1} \frac{6-|A|}{6}\right) \mathbb{P}\left(X_{n}^{\prime}=A, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)}{\mathbb{P}\left(X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right)} \\
= & \left(1_{i_{n+1}=i_{n}} \frac{i_{n}}{6}+1_{i_{n+1}=i_{n}+1} \frac{6-i_{n}}{6}\right)
\end{aligned}
$$

Thus $\left(X_{n}\right)_{n \geq 0}$ is a MC with transition matrix $\left\{p_{i j}\right\}_{i, j \in\{0, \ldots, 6\}}=\left\{\left(1_{j=i} \frac{i}{6}+1_{j=i+1} \frac{6-i}{6}\right)\right\}_{i, j \in\{0, \ldots, 6\}}$

