Markov chains
 Problem set 4

Due date: May 10, 2011

Exercise 1 [6 points]

Three robots A, B, C fight a battle. Robot A has probability $1 / 2$ of destroying the robot at which it fires, robot B has probability $1 / 3$ of destroying the robot at which it fires, and robot C has probability $1 / 6$ of destroying the robot at which it fires. The robots fire simultaneously and each robot fires at the strongest opponent not yet destroyed (A is stronger than B, B is stronger than C). The fight continues as long as at least two robots remain undestroyed. Let X_{n} be the set of robots which remain undestroyed at time n. For example, $X_{0}=\{A, B, C\}$.
(a) Write down the transition matrix of the Markov chain X_{n}. Show that the states $\{A\},\{B\},\{C\}$ and \emptyset are absorbing.
(b) Compute the probability q_{A} (respectively, q_{B}, q_{C}) that robot A (respectively, B, C) wins the battle.

Hint. To verify your result, C is most likely to win and B is least likely to win. The probability that at the end all robots are destroyed is $q_{\emptyset}=17 / 182$.

Exercise 2 [6 points]

A fair die is rolled repeatedly. Denote by X_{n} the number of different numbers observed in the rolls $1, \ldots, n$. For example, if the rolls are $3,5,3,1,4,6,6,2, \ldots$, then $X_{1}=1, X_{2}=2, X_{3}=2$, $X_{4}=3, X_{5}=4, X_{6}=5, X_{7}=5$ and $X_{k}=6$ for $k \geq 8$.
(a) Write down the transition matrix of the Markov chain X_{n} and show that 6 is an absorbing state.
(b) Let $N=\min \left\{n \in \mathbb{N}: X_{n}=6\right\}$ be the first time at which all 6 numbers have been observed. Compute $\mathbb{E} N$, the expectation of N.

Exercise 3 [6 points]

A fair coin whose sides are denoted by H (heads) and T (tails) is dropped repeatedly. Let N be the time at which the pattern $H T H$ is observed for the first time. For example, if the outcomes are HTTHTTHTH \ldots, then $N=9$. Compute $\mathbb{E} N$, the expectation of N.

Hint. Consider a Markov chain whose states are initial segments of the pattern HTH, that is $E=\{\emptyset, H, H T, H T H\}$. Interpret N as an absorption time at state $H T H$.

