Markov chains
 Problem set 5

Due date: May 17, 2011

Exercise 1 [6 points]

Consider the game of tennis when the so-called deuce (Einstand) is reached. If a player wins the next point, he has advantage (Vorteil). On the following point, he either wins the game or the game returns to deuce. Assume that for any point, player A has probability $3 / 4$ of winning the point and player B has probability $1 / 4$ of winning the point. This can be considered as a Markov chain with the following 5 states: 1: A has won; 2 : B has won; 3 : advantage $A ; 4$: deuce; 5: advantage B.
(a) Write down the transition matrix of this Markov chain. Describe the communicating classes. Which of them are closed?
(b) At deuce, find the probability that B will win.
(c) At deuce, find the expected duration of the game.

Exercise 2 [6 points]
A fair die is rolled repeatedly. Let Z_{n} be the outcome of the n-th roll. Let

$$
N=\min \left\{n \in \mathbb{N}: \exists k<n \text { such that } Z_{k}=Z_{n}\right\}
$$

be the first time at which some outcome is observed twice (not necessarily in two consecutive rolls). Find $\mathbb{E} N$, the expectation of N.

Hint. Consider a Markov chain which counts the number of different outcomes observed so far. If some outcome is observed twice, the Markov chain goes to a state called (say) \# which is absorbing.

Exercise 3 [6 points]

A gambler with initial capital $m \in \mathbb{N}$ plays a game repeatedly in which he wins 1 with probability $1 / 2$ and loses 1 with probability $1 / 2$. The series of games is over if the gambler has capital 0 (in which case he is ruined) or capital n (in which case he is satisfied and stops to play), where $n \geq m$. Compute the expected duration of the series of games.

Hint. Consider $\ell_{m}=k_{m}-k_{m-1}$, where k_{m} is the expected duration of the series of games given that the initial capital is m.

