Junior-Prof. Dr. Z. Kabluchko Christian Hirsch SS 2011 May 17, 2011

Markov chains

Problem set 6 Due date: May 24, 2011

Exercise 1 [6 points]

Consider a Markov chain with transition matrix

$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}.$$

- (a) Compute all invariant probability measures for this Markov chain.
- (b) If the Markov chain starts at state 1, what is the expected time to the first return to state 1?
- (c) If the Markov chain starts at state 1, what is the expected number of visits to state 2 before the first return to state 1?

Exercise 2 [6 points]

A drunkard walks on the state space $\{0, 1, \ldots, n\}$, state 0 representing the home and state n representing the bar. If the drunkard is at state i, where $1 \le i \le n$, then he goes to state i + 1 with probability 1/2, or to state i - 1 with probability 1/2. If he is at state 0 (home), he goes to state 1 with probability 1. If the drunkard reaches state n (bar), he stays there. Given that the drunkard starts at state 0 (home), what is the mean hitting time of state n (bar)?

Exercise 3 [6 points]

Consider a Markov chain on the state space $E = \{0, 1, 2, ...\}$ with the following transition probabilities. If a Markov chain is in state $i \in E$, then it moves to state i + 1 with probability $1 - p_i$ or falls down to state 0 with probability p_i . Here, $0 < p_i < 1$ for all i = 0, 1, ... Show that this chain is recurrent if and only if $\sum_{i=0}^{\infty} p_i = \infty$.

Exercise 4 [Not compulsory]

A random sequence of convex polygons is generated in the following way. Start with a triangle. In every step, pick two different edges of a current polygon at random, join their midpoints, and pick one of the two resulting smaller polygons at random to be the next in the sequence. Let $X_n + 3$ be the number of edges of the *n*-th polygon thus constructed ($X_0 = 0$). Find $\mathbb{E}X_n$ and compute all invariant probability distributions of this Markov chain.