Markov chains
 Problem set 6

Due date: May 24, 2011

Exercise 1 [6 points]
Consider a Markov chain with transition matrix

$$
P=\left(\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) .
$$

(a) Compute all invariant probability measures for this Markov chain.
(b) If the Markov chain starts at state 1, what is the expected time to the first return to state 1 ?
(c) If the Markov chain starts at state 1, what is the expected number of visits to state 2 before the first return to state 1 ?

Exercise 2 [6 points]

A drunkard walks on the state space $\{0,1, \ldots, n\}$, state 0 representing the home and state n representing the bar. If the drunkard is at state i, where $1 \leq i \leq n$, then he goes to state $i+1$ with probability $1 / 2$, or to state $i-1$ with probability $1 / 2$. If he is at state 0 (home), he goes to state 1 with probability 1 . If the drunkard reaches state n (bar), he stays there. Given that the drunkard starts at state 0 (home), what is the mean hitting time of state n (bar)?

Exercise 3 [6 points]

Consider a Markov chain on the state space $E=\{0,1,2, \ldots\}$ with the following transition probabilities. If a Markov chain is in state $i \in E$, then it moves to state $i+1$ with probability $1-p_{i}$ or falls down to state 0 with probability p_{i}. Here, $0<p_{i}<1$ for all $i=0,1, \ldots$. Show that this chain is recurrent if and only if $\sum_{i=0}^{\infty} p_{i}=\infty$.

Exercise 4 [Not compulsory]
A random sequence of convex polygons is generated in the following way. Start with a triangle. In every step, pick two different edges of a current polygon at random, join their midpoints, and pick one of the two resulting smaller polygons at random to be the next in the sequence. Let $X_{n}+3$ be the number of edges of the n-th polygon thus constructed $\left(X_{0}=0\right)$. Find $\mathbb{E} X_{n}$ and compute all invariant probability distributions of this Markov chain.

