Markov chains
 Problem set 9

Due date: June 14, 2011

Exercise 1 [6 points]
A queen on a 4×4-chessboard makes each permissible move with equal probability. If it starts in a corner of the chessboard, how long on average will it take to return to the corner?

Exercise 2 [6 points]
Suppose that there are N molecules in a box which is divided into two equal halves by a partition. A small hole is made in the partition. Suppose that at any moment of time one of the molecules is chosen at random (all N molecules are equiprobable) and moves through the hole in the partition to the other half of the box. Let X_{n} be the number of particles in the left half of the box at time n. Compute the unique invariant probability distribution of the Markov chain X_{n} and show that this chain is reversible.

Exercise 3 [6 points]
Consider a Markov chain on the state space $\{1, \ldots, d\}$ such that the states $m+1, \ldots, d$ are absorbing (that is, $p_{j j}=1$ for $j=m+1, \ldots, d$) and for every state $i \in\{1, \ldots, m\}$ there is an absorbing state $j \in\{m+1, \ldots, d\}$ and a number k such that $p_{i j}^{(k)}>0$. Here $0<m<d$. The transition matrix of this chain can be written in the form

$$
P=\left(\begin{array}{cc}
Q & R \\
0 & 1
\end{array}\right)
$$

where Q is a $m \times m$-matrix, R is an $m \times(d-m)$ and $\mathbf{1}$ is the $(d-m) \times(d-m)$ identity matrix.
(a) Show that $\lim _{n \rightarrow \infty} Q^{n}=0$.
(b) Consider the matrix $N=(1-Q)^{-1}$ and show that the $i j$-entry of N is the expected number of times the Markov chain visits j given that it starts at i, where $i, j \in\{1, \ldots, m\}$.

Exercise 4 [Not compulsory]
Consider an irreducible, positive recurrent Markov chain (which, however, need not be aperiodic). Denote by $\left\{\pi_{i}: i \in E\right\}$ the unique invariant probability distribution. Show that for every $i, j \in E$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} p_{i j}^{(k)}=\pi_{j} .
$$

