
Problem 3

Let us denote by (Xn)n≥0 the Markov chain describing the position of the random walker. Then (Xn)n≥0
is clearly irreducible and positively recurrent (as it is irreducible and the state space is finite). Thus the
expected time of first return is given by E(T ) = 1

α(1,1)
, where αT = (α(x,y))1≤x,y≤8 is the unique invariant

probability measure for the chain (Xn)n≥0. Furthermore, since (Xn)n≥0 describes a simple random walk on
a finite graph, we have

α(1,1) = d(1,1)

 ∑
(x,y)

1≤x,y≤8

d(x,y)


−1

.

Where d(x,y) denotes the degree of the vertex at position (x, y). Now one can easily check that

d(1,1) = d(1,8) = d(8,1) = d(8,8) = 3

d(1,x) = d(8,x) = d(x,1) = d(x,8) = 5 for all 2 ≤ x ≤ 7

d(x,y) = 8 for all 2 ≤ x, y ≤ 7

Thus we have ∑
(x,y)

1≤x,y≤8

d(x,y) = 4 · 3 + 24 · 5 + 36 · 8 = 420

implying that α(1,1) = 1
140 and therefore E(T ) = 140.

The expected number of visits in state (8, 8) is given by the quotient
α(8,8)

α(1,1)
= 1.

Problem 5b

First we consider an informal argument which gives us the correct solution (don’t do this in the exam!).
Observe that no customers are rejected in states ∅ and {B}. While the chain is in state {A}, all newly arriving
customers are rejected. Since customers arrive at rate 1, the number of customers that leave without receiving
the full service grows at rate 1 while in state {A}. In state {A,B} newly arriving customers are rejected,
too. Furthermore, if server A finishes serving his customer while the chain is in state {A,B} (which happens
with intensity 2), this customer will leave the service point without receiving full service. Thus, while in
state {A,B} customers will leave without receiving full service at rate 3. Now, by the results of part a, in
the long run the chain spends 1

30 of the time in state {A,B} and 3
10 of the time in state {A}. Thus the

overall rate at which customers are rejected is given by 1 · 3
10 + 3 · 1

30 = 2
5 .

Now to the formal solution: Consider the Markov chain on E = 2{A,B} × N0 describing the joint state
of the current set of occupied servers and the number of customers that walked away without receiving full
service. Then the non-zero entries of the generator Q are given as follows

q((∅, n), ({A}, n)) = 1 q((∅, n), (∅, n)) = −1

q(({A}, n), ({B}, n)) = 2 q(({A}, n), ({A}, n+ 1)) = 1 q(({A}, n), ({A}, n)) = −3

q(({B}, n), (∅, n)) = 3 q(({B}, n), ({A,B}, n)) = 1 q(({B}, n), ({B}, n)) = −4

q(({A,B}, n), ({A}, n)) = 3 q(({A,B}, n), ({B}, n+ 1)) = 2

q(({A,B}, n), ({A,B}, n+ 1)) = 1 q(({A,B}, n), ({A,B}, n)) = −6

Let us write m∅(t) = E(Nt) the expected number of customers that have left without being served
completely. Analogously write mA(t),mB(t),mA,B(t) for the expected number of customers that have left
by time t without being served completely, when the MC starts in state ({A}, 0), ({B}, 0) resp. ({A,B}, 0).
Using the Kolmogorov differential equation (P (t)′ = QP (t)), we obtain

m∅(t)
′ =

∑
S⊂{A,B}

∑
n≥0

n · p(∅,0),(S,n)(t)′

=
∑

S⊂{A,B}

∑
n≥0

n · (−p(∅,0),(S,n)(t) + p({A},0),(S,n))

= mA(t)−m∅(t)

1



Similarly, one obtains:

mA(t)′ = 2mB(t) + (mA(t) + 1)− 3mA(t)

mB(t)′ = 3m∅(t) +mAB(t)− 4mB(t)

mAB(t)′ = 3mA(t) + 2(mB(t) + 1) + (mAB(t) + 1)− 6mAB(t)

Solving this system of ODEs unter the IV-conditions (m∅(0) = mA(0) = mB(0) = mAB(0)) gives the
solutions:

m∅(t) =
1

3
e−3t − 1

4
e−4t +

2

25
e−5t +

2

5
t− 49

300

mA(t) = −2

3
e−3t +

3

4
e−4t − 8

25
e−5t +

2

5
t+

71

300

mB(t) =
1

3
e−3t − 3

4
e−4t +

12

25
e−5t +

2

5
t− 19

300

mAB(t) = −2

3
e−3t +

3

4
e−4t − 18

25
e−5t +

2

5
t+

191

300

In particular E(Nt)/t = m∅(t)/t→ 2
5 .
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