Problem 3

Let us denote by $\left(X_{n}\right)_{n \geq 0}$ the Markov chain describing the position of the random walker. Then $\left(X_{n}\right)_{n \geq 0}$ is clearly irreducible and positively recurrent (as it is irreducible and the state space is finite). Thus the expected time of first return is given by $E(T)=\frac{1}{\alpha_{(1,1)}}$, where $\alpha^{T}=\left(\alpha_{(x, y)}\right)_{1 \leq x, y \leq 8}$ is the unique invariant probability measure for the chain $\left(X_{n}\right)_{n \geq 0}$. Furthermore, since $\left(X_{n}\right)_{n \geq 0}$ describes a simple random walk on a finite graph, we have

$$
\alpha_{(1,1)}=d_{(1,1)}\left(\sum_{\substack{(x, y) \\ 1 \leq x, y \leq 8}} d_{(x, y)}\right)^{-1}
$$

Where $d_{(x, y)}$ denotes the degree of the vertex at position (x, y). Now one can easily check that

$$
\begin{aligned}
& d_{(1,1)}=d_{(1,8)}=d_{(8,1)}=d_{(8,8)}=3 \\
& d_{(1, x)}=d_{(8, x)}=d_{(x, 1)}=d_{(x, 8)}=5 \quad \text { for all } 2 \leq x \leq 7 \\
& d_{(x, y)}=8 \quad \text { for all } 2 \leq x, y \leq 7
\end{aligned}
$$

Thus we have

$$
\sum_{\substack{(x, y) \\ 1 \leq x, y \leq 8}} d_{(x, y)}=4 \cdot 3+24 \cdot 5+36 \cdot 8=420
$$

implying that $\alpha_{(1,1)}=\frac{1}{140}$ and therefore $\mathbb{E}(T)=140$.
The expected number of visits in state $(8,8)$ is given by the quotient $\frac{\alpha_{(8,8)}}{\alpha_{(1,1)}}=1$.

Problem 5b

First we consider an informal argument which gives us the correct solution (don't do this in the exam!). Observe that no customers are rejected in states \emptyset and $\{B\}$. While the chain is in state $\{A\}$, all newly arriving customers are rejected. Since customers arrive at rate 1, the number of customers that leave without receiving the full service grows at rate 1 while in state $\{A\}$. In state $\{A, B\}$ newly arriving customers are rejected, too. Furthermore, if server A finishes serving his customer while the chain is in state $\{A, B\}$ (which happens with intensity 2), this customer will leave the service point without receiving full service. Thus, while in state $\{A, B\}$ customers will leave without receiving full service at rate 3 . Now, by the results of part a , in the long run the chain spends $\frac{1}{30}$ of the time in state $\{A, B\}$ and $\frac{3}{10}$ of the time in state $\{A\}$. Thus the overall rate at which customers are rejected is given by $1 \cdot \frac{3}{10}+3 \cdot \frac{1}{30}=\frac{2}{5}$.

Now to the formal solution: Consider the Markov chain on $E=2^{\{A, B\}} \times \mathbb{N}_{0}$ describing the joint state of the current set of occupied servers and the number of customers that walked away without receiving full service. Then the non-zero entries of the generator Q are given as follows

$$
\begin{gathered}
q((\emptyset, n),(\{A\}, n))=1 \quad q((\emptyset, n),(\emptyset, n))=-1 \\
q((\{A\}, n),(\{B\}, n))=2 \quad q((\{A\}, n),(\{A\}, n+1))=1 \quad q((\{A\}, n),(\{A\}, n))=-3 \\
q((\{B\}, n),(\emptyset, n))=3 \quad q((\{B\}, n),(\{A, B\}, n))=1 \quad q((\{B\}, n),(\{B\}, n))=-4 \\
q((\{A, B\}, n),(\{A\}, n))=3 \quad q((\{A, B\}, n),(\{B\}, n+1))=2 \\
q((\{A, B\}, n),(\{A, B\}, n+1))=1 \quad q((\{A, B\}, n),(\{A, B\}, n))=-6
\end{gathered}
$$

Let us write $m_{\emptyset}(t)=\mathbb{E}\left(N_{t}\right)$ the expected number of customers that have left without being served completely. Analogously write $m_{A}(t), m_{B}(t), m_{A, B}(t)$ for the expected number of customers that have left by time t without being served completely, when the $M C$ starts in state $(\{A\}, 0),(\{B\}, 0)$ resp. $(\{A, B\}, 0)$. Using the Kolmogorov differential equation $\left(P(t)^{\prime}=Q P(t)\right.$, we obtain

$$
\begin{aligned}
m_{\emptyset}(t)^{\prime} & =\sum_{S \subset\{A, B\}} \sum_{n \geq 0} n \cdot p_{(\emptyset, 0),(S, n)}(t)^{\prime} \\
& =\sum_{S \subset\{A, B\}} \sum_{n \geq 0} n \cdot\left(-p_{(\emptyset, 0),(S, n)}(t)+p_{(\{A\}, 0),(S, n)}\right) \\
& =m_{A}(t)-m_{\emptyset}(t)
\end{aligned}
$$

Similarly, one obtains:

$$
\begin{aligned}
m_{A}(t)^{\prime} & =2 m_{B}(t)+\left(m_{A}(t)+1\right)-3 m_{A}(t) \\
m_{B}(t)^{\prime} & =3 m_{\emptyset}(t)+m_{A B}(t)-4 m_{B}(t) \\
m_{A B}(t)^{\prime} & =3 m_{A}(t)+2\left(m_{B}(t)+1\right)+\left(m_{A B}(t)+1\right)-6 m_{A B}(t)
\end{aligned}
$$

Solving this system of ODEs unter the IV-conditions ($\left.m_{\emptyset}(0)=m_{A}(0)=m_{B}(0)=m_{A B}(0)\right)$ gives the solutions:

$$
\begin{aligned}
m_{\emptyset}(t) & =\frac{1}{3} e^{-3 t}-\frac{1}{4} e^{-4 t}+\frac{2}{25} e^{-5 t}+\frac{2}{5} t-\frac{49}{300} \\
m_{A}(t) & =-\frac{2}{3} e^{-3 t}+\frac{3}{4} e^{-4 t}-\frac{8}{25} e^{-5 t}+\frac{2}{5} t+\frac{71}{300} \\
m_{B}(t) & =\frac{1}{3} e^{-3 t}-\frac{3}{4} e^{-4 t}+\frac{12}{25} e^{-5 t}+\frac{2}{5} t-\frac{19}{300} \\
m_{A B}(t) & =-\frac{2}{3} e^{-3 t}+\frac{3}{4} e^{-4 t}-\frac{18}{25} e^{-5 t}+\frac{2}{5} t+\frac{191}{300}
\end{aligned}
$$

In particular $\mathbb{E}\left(N_{t}\right) / t=m_{\emptyset}(t) / t \rightarrow \frac{2}{5}$.

