1 Aufgabe 4

According to the exercise text, the transition matrix is given by P = (p; ;)i jen, with

s Sifj<i+l
Dij =
0 else

Writing down the equation o’ P = o explicitly yields the following system of equations
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1/(j +2)aj =a; fori > 1
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We claim that any such sequence must satisfy a,, = n!- agp. This can be proved by induction, the cases
n = 0,1 being clear. If this assertion is already true for m, then it follows that
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from which we obtain
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The condition Y-, a,, = 1 finally implies g = e~ ! and it is easy to check that o, = (n!-e)~! is indeed an
invariant probability measure.
To compute the expectation, we first note that

1 X +1
E(Xn+1]Xn) = X, + 2( Z k)
" k=0
X t+1
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Using the tower property of conditional expectations one can prove by induction that for all £ < n the

relation .
Xj 4 2nFH 1
E(Xpi1|Xp) = =F

on—k+1

holds. In particular
2ntt — 1
E(Xn41) = Tonti
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