1 Aufgabe 4

According to the exercise text, the transition matrix is given by $P=\left(p_{i, j}\right)_{i, j \in \mathbb{N}_{0}}$ with

$$
p_{i, j}= \begin{cases}\frac{1}{i+2} & , \text { if } j \leq i+1 \\ 0 & \text { else }\end{cases}
$$

Writing down the equation $\alpha^{T} P=\alpha^{T}$ explicitly yields the following system of equations

$$
\begin{aligned}
\sum_{j=0}^{\infty} 1 /(j+2) \alpha_{j} & =\alpha_{0} \\
\sum_{j=i-1}^{\infty} 1 /(j+2) \alpha_{j} & =\alpha_{i} \text { for } i \geq 1
\end{aligned}
$$

We claim that any such sequence must satisfy $\alpha_{n}=n!\cdot \alpha_{0}$. This can be proved by induction, the cases $n=0,1$ being clear. If this assertion is already true for m, then it follows that

$$
\frac{1}{m+1} \alpha_{m-1}+\alpha_{m+1}=\alpha_{m}
$$

from which we obtain

$$
\begin{aligned}
\alpha_{m+1} & =\alpha_{m}-\frac{1}{m+1} \alpha_{m-1} \\
& =\frac{1}{m!} \alpha_{0}-\frac{1}{m+1} \frac{1}{(m-1)!} \alpha_{0} \\
& =\frac{1}{(m-1)!}\left(\frac{1}{m}-\frac{1}{m+1}\right) \alpha_{0} \\
& =\frac{1}{(m+1)!} \alpha_{0}
\end{aligned}
$$

The condition $\sum_{n=0}^{\infty} \alpha_{n}=1$ finally implies $\alpha_{0}=e^{-1}$ and it is easy to check that $\alpha_{n}=(n!\cdot e)^{-1}$ is indeed an invariant probability measure.

To compute the expectation, we first note that

$$
\begin{aligned}
\mathbb{E}\left(X_{n+1} \mid X_{n}\right) & =\frac{1}{X_{n}+2}\left(\sum_{k=0}^{X_{n}+1} k\right) \\
& =\frac{X_{n}+1}{2}
\end{aligned}
$$

Using the tower property of conditional expectations one can prove by induction that for all $k \leq n$ the relation

$$
\mathbb{E}\left(X_{n+1} \mid X_{k}\right)=\frac{X_{k}+2^{n-k+1}-1}{2^{n-k+1}}
$$

holds. In particular

$$
\mathbb{E}\left(X_{n+1}\right)=\frac{2^{n+1}-1}{2^{n+1}}
$$

