Junior-Prof. Dr. Z. Kabluchko Judith Schmidt

Risk Theory

Summer term 2012 6th July 2012

Exercise Sheet 11

Due to: 13th July 2012

Please solve 3 problems of your choice. You may also solve the remaining problems, in which case you will receive bonus points for these problems.

Exercise 1 (10 points)

An insurance company wants to estimate the late claims of an insurance portfolio. The estimation has to be based upon the following run-off triangle for claim amounts (Schadenzuwächse) S_{ik} . As always, it is assumed that all claims are completely settled within 4 years.

	Claim amounts S_{ik} in run-off year k					
Occurrence year	k=0	1	2	3	4	
2007(=0)	70	30	50	150	100	
2008(=1)	60	40	150	50		
2009(=2)	40	60	100			
2010(=3)	80	120				
2011(=4)	100					

- (a) Compute the Chain-Ladder factors F_1, F_2, F_3, F_4 .
- (b) Compute the Chain-Ladder quotas $\gamma_0, \gamma_1, \gamma_2, \gamma_3, \gamma_4$.
- (c) Compute the reserve needed to cover the claims which occurred in 2011 (and has not been reported yet).
- (d) Estimate the amount that has to be paid in 2013 for claims that date from the occurrence year 2010.
- (e) Compute the reserve which is needed to cover the claims which will be reported in 2014.

Exercise 2 (6 points)

For a portfolio of risks the premiums π_i and the current claim sums C_{ik} are known for the years of occurrence 2008 until 2011. Furthermore, there are a-priori estimates α_i for the expected end claim amounts (Endschadenstände) and a-priori estimates γ_k for the run-off pattern for the quotas. It is assumed that all claims are settled until the end of the third year of occurrence.

Occurrence year	Cumulative claim amounts C_{ik} in run-off year k k=0 1 2			3	premium π_i	a priori end claim amounts α_i			
$2008(=0) \\ 2009(=1) \\ 2010(=2) \\ 2011(=3)$	300	500	400	600	600 500 400 400	800 700 800 900			
Quotas γ_k	0.2	0.6	0.8	1.0					

Estimate the reserve needed to cover the claims which will be reported in 2013 using the

- (a) Bornhuetter-Ferguson method.
- (b) Loss-Development method.
- (c) Cape-Cod method.

Exercise 3 (6 points)

Insurance contracts from some portfolio are divided into two classes, A and B. It is known that 70% of all contracts are of type A, the remaining 30% are of type B. Contracts of type A generate in a year a number of claims which is Poisson distributed with parameter 3. Contracts of type B generate in a year a number of claims which is Poisson distributed with parameter 1.

- (a) What is the probability that a randomly chosen contract (of unknown type) generates exactly 1 claim during a year?
- (b) Some contract generated 1 claim in year 1, 0 claims in year 2, and 2 claims in year 3. What is the probability that this contract is of type A?
- (c) Some contract generated 1 claim in year 1, 0 claims in year 2, and 2 claims in year 3. Compute the expected number of claims this contract will generate in year 4.

Exercise 4 (10 points)

An insurance contract generates N claims with claim sizes X_1, X_2, \ldots The assumptions of the collective model are satisfied. The distributions of the random variables N and X_i are given by

k	0	1	2	3	t, Euro	10	20	30	40
$\mathbb{P}(N=k)$	0.2	0.4	0.3	0.1	$\mathbb{P}(X_i = t)$	0.4	0.2	0.2	0.2

- (a) Compute the smallest number R (coverage capital) such that the probability that the total claim size $S = X_1 + \ldots + X_N$ is strictly larger than R is smaller than 0.01.
- (b) What is the expectation and the variance of the total claim size S?
- (c) Suppose that the insurance covers only one claim and the insurance holder reports the largest claim (if there are claims). What is the expected payment of the insurance?

Exercise 5 (8 points)

Consider an insurance contract generating a claim size X which has exponential distribution with parameter $\lambda > 0$. The reinsurer covers the maximum of X - M and 0, if this maximum does not exceed L. Otherwise, the reinsurer covers L (Stop-Loss reinsurance). Let X_S be the insured part and X_R be the reinsured part.

- (a) Compute $\mathbb{E}X_R$, $\mathbb{E}X_S$, $\operatorname{Var}X_R$, $\operatorname{Var}X_S$.
- (b) Compute the covariance of X_R and X_S .