Junior-Prof. Dr. Z. Kabluchko Judith Schmidt

Summer term 2012 4th May 2012

Risk Theory

Exercise Sheet 3 Due to: 11th May 2012

Exercise 1 (6 points)

Assume that the duration T of a fire is a random variable with distribution $\text{Exp}(\lambda)$, where $\lambda > 0$. The damage l(t) caused by a fire of duration t may be given by $l(t) = a \exp(bt)$ with a, b > 0. What is the distribution of the random variable l(T)?

Exercise 2 (6 points)

(a) A random variable X has logarithmic distribution with parameter $p \in (0, 1)$ (notation: $X \sim \text{Log}(p)$), if

$$\mathbb{P}[X=n] = -\frac{1}{\log(1-p)} \cdot \frac{p^n}{n}, \quad n \in \mathbb{N}.$$

Show that this is indeed a well-defined probability distribution and compute its expectation.

(b) Given a random variable X with values in \mathbb{N} , we define $p_n = \mathbb{P}[X = n]$, $n \in \mathbb{N}$. Show that if $X \sim \text{Geo}(p)$ or $X \sim \text{Log}(p)$, then there exist $a, b \in \mathbb{R}$ such that $p_n = (a + \frac{b}{n})p_{n-1}$ for all $n = 2, 3, \ldots$

Exercise 3 (6 points)

Given a random variable X with values in $\mathbb{N} \cup \{0\}$, we define $p_n = \mathbb{P}[X = n]$, $n \in \mathbb{N} \cup \{0\}$. Prove that if $X \sim \operatorname{Bin}(n, p)$ for some $n \in \mathbb{N}$, $p \in (0, 1)$ or $X \sim \widetilde{NB}(c, p)$ for some c > 0, $p \in (0, 1)$, then there exist $a, b \in \mathbb{R}$ such that $p_n = (a + \frac{b}{n})p_{n-1}$ for all $n \in \mathbb{N}$.

Remark. Recall that we write $X \sim \widetilde{NB}(c, p)$ if $\mathbb{P}[X = n] = \binom{n+c-1}{n} p^c (1-p)^n$ for all $n \in \mathbb{N} \cup \{0\}$.

Exercise 4 (7 points)

Let T_0, T_1, T_2, \ldots be a Poisson point process with intensity λ . For $k, n \in \mathbb{N}$ with $k \leq n$, show that $T_k/T_n \sim \text{Beta}(k, n-k)$, i.e., the density of T_k/T_n is given by

$$f_{T_k/T_n}(t) = \frac{(n-1)!}{(k-1)!(n-k-1)!} t^{k-1} (1-t)^{n-k-1}, \quad t \in [0,1].$$

Hint: Use without proof the following formula: If Y, Z > 0 are random variables with joint density $f_{Y,Z}$, then the density of Y/Z is given by $f_{Y/Z}(t) = \int_0^\infty s f_{Y,Z}(st,s) ds$.